Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 19
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
De Schuyteneer
2
74 kgHobbs
3
67 kgGolliker
5
67 kgToftemark
6
73 kgWidar
7
54 kgAskey
9
70 kgToussaint
17
64 kgHannes
25
62 kgVergouw
30
73 kgDuba
33
85 kgBolle
35
62 kgVanhaecke
37
65 kgRex
42
70 kgHuitema
52
66 kgAbma
53
86 kgLeu
54
80 kgvan der Werff
63
60 kgTvergaard
69
72 kgvan der Linden
90
73 kg
2
74 kgHobbs
3
67 kgGolliker
5
67 kgToftemark
6
73 kgWidar
7
54 kgAskey
9
70 kgToussaint
17
64 kgHannes
25
62 kgVergouw
30
73 kgDuba
33
85 kgBolle
35
62 kgVanhaecke
37
65 kgRex
42
70 kgHuitema
52
66 kgAbma
53
86 kgLeu
54
80 kgvan der Werff
63
60 kgTvergaard
69
72 kgvan der Linden
90
73 kg
Weight (KG) →
Result →
86
54
2
90
# | Rider | Weight (KG) |
---|---|---|
2 | DE SCHUYTENEER Steffen | 74 |
3 | HOBBS Noah | 67 |
5 | GOLLIKER Joshua | 67 |
6 | TOFTEMARK Lucas | 73 |
7 | WIDAR Jarno | 54 |
9 | ASKEY Ben | 70 |
17 | TOUSSAINT Wouter | 64 |
25 | HANNES Victor | 62 |
30 | VERGOUW Julian | 73 |
33 | DUBA Maxime | 85 |
35 | BOLLE Bert | 62 |
37 | VANHAECKE Arno | 65 |
42 | REX Tim | 70 |
52 | HUITEMA Jasper | 66 |
53 | ABMA Elmar | 86 |
54 | LEU Richard | 80 |
63 | VAN DER WERFF Thom | 60 |
69 | TVERGAARD Mikkel | 72 |
90 | VAN DER LINDEN Sjoerd | 73 |