Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 11
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Hobbs
1
67 kgDe Schuyteneer
3
74 kgDe Clerck
4
64 kgDuba
5
85 kgVergouw
9
73 kgHuitema
10
66 kgAskey
11
70 kgvan der Werff
12
60 kgVanhaecke
16
65 kgRex
17
70 kgBolle
35
62 kgHannes
37
62 kgWidar
46
54 kgTvergaard
52
72 kgToftemark
57
73 kgToussaint
58
64 kgAbma
66
86 kgGolliker
76
67 kgLeu
82
80 kgvan der Linden
86
73 kg
1
67 kgDe Schuyteneer
3
74 kgDe Clerck
4
64 kgDuba
5
85 kgVergouw
9
73 kgHuitema
10
66 kgAskey
11
70 kgvan der Werff
12
60 kgVanhaecke
16
65 kgRex
17
70 kgBolle
35
62 kgHannes
37
62 kgWidar
46
54 kgTvergaard
52
72 kgToftemark
57
73 kgToussaint
58
64 kgAbma
66
86 kgGolliker
76
67 kgLeu
82
80 kgvan der Linden
86
73 kg
Weight (KG) →
Result →
86
54
1
86
# | Rider | Weight (KG) |
---|---|---|
1 | HOBBS Noah | 67 |
3 | DE SCHUYTENEER Steffen | 74 |
4 | DE CLERCK Niels | 64 |
5 | DUBA Maxime | 85 |
9 | VERGOUW Julian | 73 |
10 | HUITEMA Jasper | 66 |
11 | ASKEY Ben | 70 |
12 | VAN DER WERFF Thom | 60 |
16 | VANHAECKE Arno | 65 |
17 | REX Tim | 70 |
35 | BOLLE Bert | 62 |
37 | HANNES Victor | 62 |
46 | WIDAR Jarno | 54 |
52 | TVERGAARD Mikkel | 72 |
57 | TOFTEMARK Lucas | 73 |
58 | TOUSSAINT Wouter | 64 |
66 | ABMA Elmar | 86 |
76 | GOLLIKER Joshua | 67 |
82 | LEU Richard | 80 |
86 | VAN DER LINDEN Sjoerd | 73 |