Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.9 * weight - 103
This means that on average for every extra kilogram weight a rider loses 1.9 positions in the result.
Brennan
1
68 kgWidar
3
54 kgBisiaux
6
58 kgDe Schuyteneer
10
74 kgScheldeman
14
66 kgDecomble
15
62 kgGruszczynski
16
60 kgMarsh
17
66 kgGeerinck
22
67 kgDockx
29
61 kgVandevorst
39
74 kgJust Pedersen
40
80 kgCrabbe
42
70 kgMachin
50
75 kgLeu
62
80 kgØrn-Kristoff
63
76 kg
1
68 kgWidar
3
54 kgBisiaux
6
58 kgDe Schuyteneer
10
74 kgScheldeman
14
66 kgDecomble
15
62 kgGruszczynski
16
60 kgMarsh
17
66 kgGeerinck
22
67 kgDockx
29
61 kgVandevorst
39
74 kgJust Pedersen
40
80 kgCrabbe
42
70 kgMachin
50
75 kgLeu
62
80 kgØrn-Kristoff
63
76 kg
Weight (KG) →
Result →
80
54
1
63
# | Rider | Weight (KG) |
---|---|---|
1 | BRENNAN Matthew | 68 |
3 | WIDAR Jarno | 54 |
6 | BISIAUX Léo | 58 |
10 | DE SCHUYTENEER Steffen | 74 |
14 | SCHELDEMAN Xander | 66 |
15 | DECOMBLE Maxime | 62 |
16 | GRUSZCZYNSKI Filip | 60 |
17 | MARSH Ben | 66 |
22 | GEERINCK Seppe | 67 |
29 | DOCKX Gilles | 61 |
39 | VANDEVORST Nio | 74 |
40 | JUST PEDERSEN Carl Emil | 80 |
42 | CRABBE Tom | 70 |
50 | MACHIN Zak | 75 |
62 | LEU Richard | 80 |
63 | ØRN-KRISTOFF Felix | 76 |