Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 110
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
De Schuyteneer
1
74 kgScheldeman
5
66 kgLeu
6
80 kgØrn-Kristoff
14
76 kgBrennan
15
68 kgVandevorst
17
74 kgMachin
26
75 kgBisiaux
28
58 kgDockx
30
61 kgMarsh
36
66 kgWidar
48
54 kgJust Pedersen
50
80 kgGeerinck
51
67 kgCrabbe
53
70 kgGruszczynski
60
60 kgDecomble
64
62 kg
1
74 kgScheldeman
5
66 kgLeu
6
80 kgØrn-Kristoff
14
76 kgBrennan
15
68 kgVandevorst
17
74 kgMachin
26
75 kgBisiaux
28
58 kgDockx
30
61 kgMarsh
36
66 kgWidar
48
54 kgJust Pedersen
50
80 kgGeerinck
51
67 kgCrabbe
53
70 kgGruszczynski
60
60 kgDecomble
64
62 kg
Weight (KG) →
Result →
80
54
1
64
# | Rider | Weight (KG) |
---|---|---|
1 | DE SCHUYTENEER Steffen | 74 |
5 | SCHELDEMAN Xander | 66 |
6 | LEU Richard | 80 |
14 | ØRN-KRISTOFF Felix | 76 |
15 | BRENNAN Matthew | 68 |
17 | VANDEVORST Nio | 74 |
26 | MACHIN Zak | 75 |
28 | BISIAUX Léo | 58 |
30 | DOCKX Gilles | 61 |
36 | MARSH Ben | 66 |
48 | WIDAR Jarno | 54 |
50 | JUST PEDERSEN Carl Emil | 80 |
51 | GEERINCK Seppe | 67 |
53 | CRABBE Tom | 70 |
60 | GRUSZCZYNSKI Filip | 60 |
64 | DECOMBLE Maxime | 62 |