Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 47
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Chaleil
1
68 kgZomermaand
2
67 kgCappon
20
62 kgBoussemaere
24
56 kgJackowiak
25
65 kgSchwartz
26
69 kgGrindley
29
72 kgMartinet
39
66 kgHuitema
42
72 kgHemeryck
44
72 kgRaus
55
73 kgLefevre
59
75 kgDebeaussaert
73
63 kgGravelle
78
62 kgBauwens
81
71 kgJust Pedersen
92
80 kgBosmans
97
65 kg
1
68 kgZomermaand
2
67 kgCappon
20
62 kgBoussemaere
24
56 kgJackowiak
25
65 kgSchwartz
26
69 kgGrindley
29
72 kgMartinet
39
66 kgHuitema
42
72 kgHemeryck
44
72 kgRaus
55
73 kgLefevre
59
75 kgDebeaussaert
73
63 kgGravelle
78
62 kgBauwens
81
71 kgJust Pedersen
92
80 kgBosmans
97
65 kg
Weight (KG) →
Result →
80
56
1
97
# | Rider | Weight (KG) |
---|---|---|
1 | CHALEIL Louis | 68 |
2 | ZOMERMAAND Jurgen | 67 |
20 | CAPPON Staf | 62 |
24 | BOUSSEMAERE Louic | 56 |
25 | JACKOWIAK Jan Michal | 65 |
26 | SCHWARTZ Simon | 69 |
29 | GRINDLEY Sebastian | 72 |
39 | MARTINET Valentin | 66 |
42 | HUITEMA Thomas | 72 |
44 | HEMERYCK Wout | 72 |
55 | RAUS Jérôme | 73 |
59 | LEFEVRE Fabrice | 75 |
73 | DEBEAUSSAERT Michiel | 63 |
78 | GRAVELLE Rory | 62 |
81 | BAUWENS Siebe | 71 |
92 | JUST PEDERSEN Carl Emil | 80 |
97 | BOSMANS Thibau | 65 |