Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 3
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Blouwe
1
71 kgKostański
2
74 kgKuś
3
70 kgBaroncini
4
74 kgMaciejuk
5
78 kgPenhoët
6
64 kgSander Hansen
7
68 kgPeter
8
63 kgInkster
9
73 kgDe Meester
11
73 kgVauquelin
12
69 kgColnaghi
13
63 kgSerrano
14
60 kgBraet
16
68 kgKnecht
17
66 kgvan den Berg
21
73 kgPrice-Pejtersen
22
83 kgGovekar
23
73 kgMarsman
24
75 kg
1
71 kgKostański
2
74 kgKuś
3
70 kgBaroncini
4
74 kgMaciejuk
5
78 kgPenhoët
6
64 kgSander Hansen
7
68 kgPeter
8
63 kgInkster
9
73 kgDe Meester
11
73 kgVauquelin
12
69 kgColnaghi
13
63 kgSerrano
14
60 kgBraet
16
68 kgKnecht
17
66 kgvan den Berg
21
73 kgPrice-Pejtersen
22
83 kgGovekar
23
73 kgMarsman
24
75 kg
Weight (KG) →
Result →
83
60
1
24
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | BLOUWE Louis | 71 |
| 2 | KOSTAŃSKI Mateusz | 74 |
| 3 | KUŚ Adam | 70 |
| 4 | BARONCINI Filippo | 74 |
| 5 | MACIEJUK Filip | 78 |
| 6 | PENHOËT Paul | 64 |
| 7 | SANDER HANSEN Marcus | 68 |
| 8 | PETER Jannis | 63 |
| 9 | INKSTER Eric | 73 |
| 11 | DE MEESTER Luca | 73 |
| 12 | VAUQUELIN Kévin | 69 |
| 13 | COLNAGHI Luca | 63 |
| 14 | SERRANO Javier | 60 |
| 16 | BRAET Vito | 68 |
| 17 | KNECHT Noah | 66 |
| 21 | VAN DEN BERG Marijn | 73 |
| 22 | PRICE-PEJTERSEN Johan | 83 |
| 23 | GOVEKAR Matevž | 73 |
| 24 | MARSMAN Tim | 75 |