Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.1 * weight - 88
This means that on average for every extra kilogram weight a rider loses 2.1 positions in the result.
Kraak
2
52 kgVan Dam
5
58 kgFortin
8
55 kgBertizzolo
9
54 kgde Boer
12
62 kgBerteau
13
57 kgFouquenet
16
60 kgSchweinberger
27
63 kgVitillo
28
51 kgBlasi
29
57 kgConsonni
44
59 kgGonzález
47
51 kgNerlo
51
65 kgScott
52
60 kgColes-Lyster
63
61 kgDronova-Balabolina
75
63 kgDuval
83
53 kgvan der Hulst
87
66 kg
2
52 kgVan Dam
5
58 kgFortin
8
55 kgBertizzolo
9
54 kgde Boer
12
62 kgBerteau
13
57 kgFouquenet
16
60 kgSchweinberger
27
63 kgVitillo
28
51 kgBlasi
29
57 kgConsonni
44
59 kgGonzález
47
51 kgNerlo
51
65 kgScott
52
60 kgColes-Lyster
63
61 kgDronova-Balabolina
75
63 kgDuval
83
53 kgvan der Hulst
87
66 kg
Weight (KG) →
Result →
66
51
2
87
# | Rider | Weight (KG) |
---|---|---|
2 | KRAAK Amber | 52 |
5 | VAN DAM Sarah | 58 |
8 | FORTIN Valentine | 55 |
9 | BERTIZZOLO Sofia | 54 |
12 | DE BOER Manon | 62 |
13 | BERTEAU Victoire | 57 |
16 | FOUQUENET Amandine | 60 |
27 | SCHWEINBERGER Kathrin | 63 |
28 | VITILLO Matilde | 51 |
29 | BLASI Paula | 57 |
44 | CONSONNI Chiara | 59 |
47 | GONZÁLEZ Alicia | 51 |
51 | NERLO Aurela | 65 |
52 | SCOTT Katie | 60 |
63 | COLES-LYSTER Maggie | 61 |
75 | DRONOVA-BALABOLINA Tamara | 63 |
83 | DUVAL Eugénie | 53 |
87 | VAN DER HULST Amber | 66 |