Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -42.5 * weight + 3740
This means that on average for every extra kilogram weight a rider loses -42.5 positions in the result.
Veenstra
2
70 kgKirsipuu
4
80 kgvan Heeswijk
5
73 kgMarie
990
68 kgMadouas
990
70 kgSimon
990
70 kgMeier
990
60 kgVan Petegem
990
70 kgDufaux
990
60 kgVirenque
990
65 kgRobin
990
63 kgBrochard
990
68 kgWesemann
990
72 kgHeppner
990
69 kgBourguignon
990
72 kgSeigneur
990
71 kgBoardman
990
70 kg
2
70 kgKirsipuu
4
80 kgvan Heeswijk
5
73 kgMarie
990
68 kgMadouas
990
70 kgSimon
990
70 kgMeier
990
60 kgVan Petegem
990
70 kgDufaux
990
60 kgVirenque
990
65 kgRobin
990
63 kgBrochard
990
68 kgWesemann
990
72 kgHeppner
990
69 kgBourguignon
990
72 kgSeigneur
990
71 kgBoardman
990
70 kg
Weight (KG) →
Result →
80
60
2
990
# | Rider | Weight (KG) |
---|---|---|
2 | VEENSTRA Wiebren | 70 |
4 | KIRSIPUU Jaan | 80 |
5 | VAN HEESWIJK Max | 73 |
990 | MARIE Thierry | 68 |
990 | MADOUAS Laurent | 70 |
990 | SIMON François | 70 |
990 | MEIER Roland | 60 |
990 | VAN PETEGEM Peter | 70 |
990 | DUFAUX Laurent | 60 |
990 | VIRENQUE Richard | 65 |
990 | ROBIN Jean-Cyril | 63 |
990 | BROCHARD Laurent | 68 |
990 | WESEMANN Steffen | 72 |
990 | HEPPNER Jens | 69 |
990 | BOURGUIGNON Thierry | 72 |
990 | SEIGNEUR Eddy | 71 |
990 | BOARDMAN Chris | 70 |