Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3.8 * weight + 1020
This means that on average for every extra kilogram weight a rider loses -3.8 positions in the result.
Marie
1
68 kgBoardman
2
70 kgBrochard
3
68 kgSeigneur
4
71 kgKirsipuu
990
80 kgSimon
990
70 kgMadouas
990
70 kgMeier
990
60 kgVan Petegem
990
70 kgRobin
990
63 kgDufaux
990
60 kgVirenque
990
65 kgWesemann
990
72 kgHeppner
990
69 kgVeenstra
990
70 kgvan Heeswijk
990
73 kgBourguignon
990
72 kg
1
68 kgBoardman
2
70 kgBrochard
3
68 kgSeigneur
4
71 kgKirsipuu
990
80 kgSimon
990
70 kgMadouas
990
70 kgMeier
990
60 kgVan Petegem
990
70 kgRobin
990
63 kgDufaux
990
60 kgVirenque
990
65 kgWesemann
990
72 kgHeppner
990
69 kgVeenstra
990
70 kgvan Heeswijk
990
73 kgBourguignon
990
72 kg
Weight (KG) →
Result →
80
60
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | MARIE Thierry | 68 |
2 | BOARDMAN Chris | 70 |
3 | BROCHARD Laurent | 68 |
4 | SEIGNEUR Eddy | 71 |
990 | KIRSIPUU Jaan | 80 |
990 | SIMON François | 70 |
990 | MADOUAS Laurent | 70 |
990 | MEIER Roland | 60 |
990 | VAN PETEGEM Peter | 70 |
990 | ROBIN Jean-Cyril | 63 |
990 | DUFAUX Laurent | 60 |
990 | VIRENQUE Richard | 65 |
990 | WESEMANN Steffen | 72 |
990 | HEPPNER Jens | 69 |
990 | VEENSTRA Wiebren | 70 |
990 | VAN HEESWIJK Max | 73 |
990 | BOURGUIGNON Thierry | 72 |