Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Vaughters
1
64 kgJonker
2
69 kgAerts
3
68 kgVerheyen
4
68 kgBouvard
5
70 kgMoreau
6
71 kgMoerenhout
7
74 kgRobin
8
63 kgBessy
9
65 kgJulich
10
68 kgMcRae
11
62 kgOsa
12
64 kgSivakov
13
72 kgLotz
14
76 kgHinault
15
63 kgMadouas
16
70 kgMorin
17
79 kgArmstrong
19
72 kgNoè
21
65 kgHamilton
23
65 kgVan de Wouwer
24
66 kgAgnolutto
25
69 kg
1
64 kgJonker
2
69 kgAerts
3
68 kgVerheyen
4
68 kgBouvard
5
70 kgMoreau
6
71 kgMoerenhout
7
74 kgRobin
8
63 kgBessy
9
65 kgJulich
10
68 kgMcRae
11
62 kgOsa
12
64 kgSivakov
13
72 kgLotz
14
76 kgHinault
15
63 kgMadouas
16
70 kgMorin
17
79 kgArmstrong
19
72 kgNoè
21
65 kgHamilton
23
65 kgVan de Wouwer
24
66 kgAgnolutto
25
69 kg
Weight (KG) →
Result →
79
62
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | VAUGHTERS Jonathan | 64 |
2 | JONKER Patrick | 69 |
3 | AERTS Mario | 68 |
4 | VERHEYEN Geert | 68 |
5 | BOUVARD Gilles | 70 |
6 | MOREAU Christophe | 71 |
7 | MOERENHOUT Koos | 74 |
8 | ROBIN Jean-Cyril | 63 |
9 | BESSY Frédéric | 65 |
10 | JULICH Bobby | 68 |
11 | MCRAE William Chann | 62 |
12 | OSA Aitor | 64 |
13 | SIVAKOV Alexei | 72 |
14 | LOTZ Marc | 76 |
15 | HINAULT Sébastien | 63 |
16 | MADOUAS Laurent | 70 |
17 | MORIN Anthony | 79 |
19 | ARMSTRONG Lance | 72 |
21 | NOÈ Andrea | 65 |
23 | HAMILTON Tyler | 65 |
24 | VAN DE WOUWER Kurt | 66 |
25 | AGNOLUTTO Christophe | 69 |