Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Petacchi
1
70 kgGuesdon
2
73 kgvan Bon
3
72 kgFlickinger
4
78 kgValoti
5
64 kgHalgand
6
67 kgRous
7
70 kgChanteur
9
62 kgTurpin
11
57 kgPeron
12
70 kgJulich
13
68 kgOsa
14
64 kgMazzanti
15
64 kgNazon
16
74 kgMagnien
17
68 kgMichaelsen
18
79 kgHinault
19
63 kgClain
20
59 kg
1
70 kgGuesdon
2
73 kgvan Bon
3
72 kgFlickinger
4
78 kgValoti
5
64 kgHalgand
6
67 kgRous
7
70 kgChanteur
9
62 kgTurpin
11
57 kgPeron
12
70 kgJulich
13
68 kgOsa
14
64 kgMazzanti
15
64 kgNazon
16
74 kgMagnien
17
68 kgMichaelsen
18
79 kgHinault
19
63 kgClain
20
59 kg
Weight (KG) →
Result →
79
57
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | PETACCHI Alessandro | 70 |
2 | GUESDON Frédéric | 73 |
3 | VAN BON Léon | 72 |
4 | FLICKINGER Andy | 78 |
5 | VALOTI Paolo | 64 |
6 | HALGAND Patrice | 67 |
7 | ROUS Didier | 70 |
9 | CHANTEUR Pascal | 62 |
11 | TURPIN Ludovic | 57 |
12 | PERON Andrea | 70 |
13 | JULICH Bobby | 68 |
14 | OSA Aitor | 64 |
15 | MAZZANTI Luca | 64 |
16 | NAZON Jean-Patrick | 74 |
17 | MAGNIEN Emmanuel | 68 |
18 | MICHAELSEN Lars | 79 |
19 | HINAULT Sébastien | 63 |
20 | CLAIN Médéric | 59 |