Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 28
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Petacchi
1
70 kgBalducci
2
69 kgNazon
3
68 kgMichaelsen
4
79 kgVierhouten
5
71 kgOngarato
6
69 kgHinault
7
63 kgSivakov
8
72 kgFlickinger
10
78 kgSánchez
11
65 kgDean
12
72 kgSimon
13
70 kgvan Bon
14
72 kgChanteur
15
62 kgBotcharov
16
54 kgVasseur
17
70 kgPronk
19
73 kgHalgand
20
67 kg
1
70 kgBalducci
2
69 kgNazon
3
68 kgMichaelsen
4
79 kgVierhouten
5
71 kgOngarato
6
69 kgHinault
7
63 kgSivakov
8
72 kgFlickinger
10
78 kgSánchez
11
65 kgDean
12
72 kgSimon
13
70 kgvan Bon
14
72 kgChanteur
15
62 kgBotcharov
16
54 kgVasseur
17
70 kgPronk
19
73 kgHalgand
20
67 kg
Weight (KG) →
Result →
79
54
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | PETACCHI Alessandro | 70 |
2 | BALDUCCI Gabriele | 69 |
3 | NAZON Damien | 68 |
4 | MICHAELSEN Lars | 79 |
5 | VIERHOUTEN Aart | 71 |
6 | ONGARATO Alberto | 69 |
7 | HINAULT Sébastien | 63 |
8 | SIVAKOV Alexei | 72 |
10 | FLICKINGER Andy | 78 |
11 | SÁNCHEZ Samuel | 65 |
12 | DEAN Julian | 72 |
13 | SIMON François | 70 |
14 | VAN BON Léon | 72 |
15 | CHANTEUR Pascal | 62 |
16 | BOTCHAROV Alexandre | 54 |
17 | VASSEUR Cédric | 70 |
19 | PRONK Matthé | 73 |
20 | HALGAND Patrice | 67 |