Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 13
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Halgand
1
67 kgLoda
2
73 kgDelrieu
3
69 kgPetacchi
4
70 kgOngarato
5
69 kgVerheyen
6
68 kgSánchez
7
65 kgBotcharov
10
54 kgChanteur
11
62 kgYakovlev
12
70 kgDemarbaix
13
64 kgHeulot
14
69 kgBaranowski
16
68 kgMillar
17
79 kgMancebo
18
64 kgVan de Wouwer
19
66 kgEkimov
20
69 kg
1
67 kgLoda
2
73 kgDelrieu
3
69 kgPetacchi
4
70 kgOngarato
5
69 kgVerheyen
6
68 kgSánchez
7
65 kgBotcharov
10
54 kgChanteur
11
62 kgYakovlev
12
70 kgDemarbaix
13
64 kgHeulot
14
69 kgBaranowski
16
68 kgMillar
17
79 kgMancebo
18
64 kgVan de Wouwer
19
66 kgEkimov
20
69 kg
Weight (KG) →
Result →
79
54
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | HALGAND Patrice | 67 |
2 | LODA Nicola | 73 |
3 | DELRIEU David | 69 |
4 | PETACCHI Alessandro | 70 |
5 | ONGARATO Alberto | 69 |
6 | VERHEYEN Geert | 68 |
7 | SÁNCHEZ Samuel | 65 |
10 | BOTCHAROV Alexandre | 54 |
11 | CHANTEUR Pascal | 62 |
12 | YAKOVLEV Serguei | 70 |
13 | DEMARBAIX Sébastien | 64 |
14 | HEULOT Stéphane | 69 |
16 | BARANOWSKI Dariusz | 68 |
17 | MILLAR David | 79 |
18 | MANCEBO Francisco | 64 |
19 | VAN DE WOUWER Kurt | 66 |
20 | EKIMOV Viatcheslav | 69 |