Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 4
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Rogers
1
74 kgVogondy
2
62 kgCaucchioli
3
68 kgMoncoutié
4
69 kgHary
5
68 kgTurpin
6
57 kgTombak
7
71 kgBotcharov
8
54 kgVoigt
9
76 kgBrandt
10
66 kgGilbert
11
75 kgZberg
12
72 kgHalgand
13
67 kgPortal
14
70 kgPaolini
15
66 kgGoubert
17
62 kgBodrogi
18
79 kgHinault
19
63 kgMengin
22
68 kgKlier
23
72 kgPoilvet
24
71 kgMoerenhout
25
74 kgFédrigo
26
66 kg
1
74 kgVogondy
2
62 kgCaucchioli
3
68 kgMoncoutié
4
69 kgHary
5
68 kgTurpin
6
57 kgTombak
7
71 kgBotcharov
8
54 kgVoigt
9
76 kgBrandt
10
66 kgGilbert
11
75 kgZberg
12
72 kgHalgand
13
67 kgPortal
14
70 kgPaolini
15
66 kgGoubert
17
62 kgBodrogi
18
79 kgHinault
19
63 kgMengin
22
68 kgKlier
23
72 kgPoilvet
24
71 kgMoerenhout
25
74 kgFédrigo
26
66 kg
Weight (KG) →
Result →
79
54
1
26
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | ROGERS Michael | 74 |
| 2 | VOGONDY Nicolas | 62 |
| 3 | CAUCCHIOLI Pietro | 68 |
| 4 | MONCOUTIÉ David | 69 |
| 5 | HARY Maryan | 68 |
| 6 | TURPIN Ludovic | 57 |
| 7 | TOMBAK Janek | 71 |
| 8 | BOTCHAROV Alexandre | 54 |
| 9 | VOIGT Jens | 76 |
| 10 | BRANDT Christophe | 66 |
| 11 | GILBERT Philippe | 75 |
| 12 | ZBERG Beat | 72 |
| 13 | HALGAND Patrice | 67 |
| 14 | PORTAL Nicolas | 70 |
| 15 | PAOLINI Luca | 66 |
| 17 | GOUBERT Stéphane | 62 |
| 18 | BODROGI László | 79 |
| 19 | HINAULT Sébastien | 63 |
| 22 | MENGIN Christophe | 68 |
| 23 | KLIER Andreas | 72 |
| 24 | POILVET Benoît | 71 |
| 25 | MOERENHOUT Koos | 74 |
| 26 | FÉDRIGO Pierrick | 66 |