Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 20
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Goubert
1
62 kgVoeckler
2
71 kgJégou
3
71 kgHervé
4
60 kgCharteau
5
67 kgAgnolutto
6
69 kgRobin
7
63 kgMourey
8
62 kgKlöden
9
63 kgBergès
10
68 kgBotcharov
11
54 kgTombak
12
71 kgKessler
13
70 kgCasar
14
63 kgSchröder
16
64 kgMcGee
17
72 kgHiekmann
18
70 kgScanlon
20
79 kgAuger
21
78 kg
1
62 kgVoeckler
2
71 kgJégou
3
71 kgHervé
4
60 kgCharteau
5
67 kgAgnolutto
6
69 kgRobin
7
63 kgMourey
8
62 kgKlöden
9
63 kgBergès
10
68 kgBotcharov
11
54 kgTombak
12
71 kgKessler
13
70 kgCasar
14
63 kgSchröder
16
64 kgMcGee
17
72 kgHiekmann
18
70 kgScanlon
20
79 kgAuger
21
78 kg
Weight (KG) →
Result →
79
54
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | GOUBERT Stéphane | 62 |
2 | VOECKLER Thomas | 71 |
3 | JÉGOU Lilian | 71 |
4 | HERVÉ Cédric | 60 |
5 | CHARTEAU Anthony | 67 |
6 | AGNOLUTTO Christophe | 69 |
7 | ROBIN Jean-Cyril | 63 |
8 | MOUREY Francis | 62 |
9 | KLÖDEN Andreas | 63 |
10 | BERGÈS Stéphane | 68 |
11 | BOTCHAROV Alexandre | 54 |
12 | TOMBAK Janek | 71 |
13 | KESSLER Matthias | 70 |
14 | CASAR Sandy | 63 |
16 | SCHRÖDER Björn | 64 |
17 | MCGEE Bradley | 72 |
18 | HIEKMANN Torsten | 70 |
20 | SCANLON Mark | 79 |
21 | AUGER Ludovic | 78 |