Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Kanter
1
68 kgAdrià
2
64 kgDémare
3
76 kgValgren
4
71 kgBarbier
5
69 kgSimon
6
65 kgViviani
7
67 kgBoudat
8
70 kgMariault
10
58 kgWoods
11
62 kgCimolai
12
70 kgVendrame
13
60 kgBaroncini
14
74 kgBonifazio
15
72 kgGregaard
17
66 kgEiking
19
75 kgPelegrí
20
63 kgAberasturi
21
69 kgBarthe
22
70 kgGoubert
23
61 kg
1
68 kgAdrià
2
64 kgDémare
3
76 kgValgren
4
71 kgBarbier
5
69 kgSimon
6
65 kgViviani
7
67 kgBoudat
8
70 kgMariault
10
58 kgWoods
11
62 kgCimolai
12
70 kgVendrame
13
60 kgBaroncini
14
74 kgBonifazio
15
72 kgGregaard
17
66 kgEiking
19
75 kgPelegrí
20
63 kgAberasturi
21
69 kgBarthe
22
70 kgGoubert
23
61 kg
Weight (KG) →
Result →
76
58
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | KANTER Max | 68 |
2 | ADRIÀ Roger | 64 |
3 | DÉMARE Arnaud | 76 |
4 | VALGREN Michael | 71 |
5 | BARBIER Pierre | 69 |
6 | SIMON Julien | 65 |
7 | VIVIANI Elia | 67 |
8 | BOUDAT Thomas | 70 |
10 | MARIAULT Axel | 58 |
11 | WOODS Michael | 62 |
12 | CIMOLAI Davide | 70 |
13 | VENDRAME Andrea | 60 |
14 | BARONCINI Filippo | 74 |
15 | BONIFAZIO Niccolò | 72 |
17 | GREGAARD Jonas | 66 |
19 | EIKING Odd Christian | 75 |
20 | PELEGRÍ Óscar | 63 |
21 | ABERASTURI Jon | 69 |
22 | BARTHE Cyril | 70 |
23 | GOUBERT Jean | 61 |