Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 45
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Godon
1
74 kgvan den Berg
2
73 kgGarcía Pierna
3
67 kgRodríguez
5
59 kgGautherat
6
70 kgPapon
7
69 kgBarthe
8
70 kgDe Pestel
9
74 kgMeens
10
62 kgAugé
11
61 kgRenard-Haquin
13
74 kgGermani
14
62 kgBerrade
16
72 kgHerrada
18
70 kgDarder
19
67 kgCras
20
65 kgBalderstone
24
61 kgMorin
25
74 kgSchiffer
26
62 kgDíaz
28
62 kg
1
74 kgvan den Berg
2
73 kgGarcía Pierna
3
67 kgRodríguez
5
59 kgGautherat
6
70 kgPapon
7
69 kgBarthe
8
70 kgDe Pestel
9
74 kgMeens
10
62 kgAugé
11
61 kgRenard-Haquin
13
74 kgGermani
14
62 kgBerrade
16
72 kgHerrada
18
70 kgDarder
19
67 kgCras
20
65 kgBalderstone
24
61 kgMorin
25
74 kgSchiffer
26
62 kgDíaz
28
62 kg
Weight (KG) →
Result →
74
59
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | GODON Dorian | 74 |
2 | VAN DEN BERG Marijn | 73 |
3 | GARCÍA PIERNA Raúl | 67 |
5 | RODRÍGUEZ Cristián | 59 |
6 | GAUTHERAT Pierre | 70 |
7 | PAPON Victor | 69 |
8 | BARTHE Cyril | 70 |
9 | DE PESTEL Sander | 74 |
10 | MEENS Johan | 62 |
11 | AUGÉ Ronan | 61 |
13 | RENARD-HAQUIN Henri-François | 74 |
14 | GERMANI Lorenzo | 62 |
16 | BERRADE Urko | 72 |
18 | HERRADA Jesús | 70 |
19 | DARDER Sergi | 67 |
20 | CRAS Steff | 65 |
24 | BALDERSTONE Abel | 61 |
25 | MORIN Emmanuel | 74 |
26 | SCHIFFER Anton | 62 |
28 | DÍAZ Alex | 62 |