Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 3
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Tesson
1
59 kgSoupe
2
70 kgMulubrhan
3
60 kgSalby
5
68 kgBarthe
7
70 kgAngulo
8
67 kgBlouwe
10
71 kgBerhane
11
66 kgMayer
13
64 kgFernández
14
78 kgRostovtsev
17
73 kgLagab
18
63 kgByiza Uhiriwe
19
60 kgAlleno
21
69 kgRogora
22
65 kgTeugels
23
64 kgRougier-Lagane
24
69 kgLauk
26
69 kgKadota
29
65 kgOurselin
32
70 kg
1
59 kgSoupe
2
70 kgMulubrhan
3
60 kgSalby
5
68 kgBarthe
7
70 kgAngulo
8
67 kgBlouwe
10
71 kgBerhane
11
66 kgMayer
13
64 kgFernández
14
78 kgRostovtsev
17
73 kgLagab
18
63 kgByiza Uhiriwe
19
60 kgAlleno
21
69 kgRogora
22
65 kgTeugels
23
64 kgRougier-Lagane
24
69 kgLauk
26
69 kgKadota
29
65 kgOurselin
32
70 kg
Weight (KG) →
Result →
78
59
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | TESSON Jason | 59 |
2 | SOUPE Geoffrey | 70 |
3 | MULUBRHAN Henok | 60 |
5 | SALBY Alexander | 68 |
7 | BARTHE Cyril | 70 |
8 | ANGULO Antonio | 67 |
10 | BLOUWE Louis | 71 |
11 | BERHANE Natnael | 66 |
13 | MAYER Alexandre | 64 |
14 | FERNÁNDEZ Miguel Ángel | 78 |
17 | ROSTOVTSEV Sergey | 73 |
18 | LAGAB Azzedine | 63 |
19 | BYIZA UHIRIWE Renus | 60 |
21 | ALLENO Clément | 69 |
22 | ROGORA Kiya | 65 |
23 | TEUGELS Lennert | 64 |
24 | ROUGIER-LAGANE Christopher | 69 |
26 | LAUK Karl Patrick | 69 |
29 | KADOTA Yusuke | 65 |
32 | OURSELIN Paul | 70 |