Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 34
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Deignan
1
57 kgHosking
2
60 kgOlds
3
54 kgBrand
4
57 kgJohansson
5
58 kgvan Dijk
7
71 kgD'hoore
9
63 kgBronzini
10
54 kgGuarischi
12
57 kgJeuland-Tranchant
13
61 kgFournier
14
60 kgDruyts
15
62 kgKitchen
16
60 kgScandolara
20
52 kgCecchini
21
52 kgConfalonieri
22
56 kgPieters
23
58 kg
1
57 kgHosking
2
60 kgOlds
3
54 kgBrand
4
57 kgJohansson
5
58 kgvan Dijk
7
71 kgD'hoore
9
63 kgBronzini
10
54 kgGuarischi
12
57 kgJeuland-Tranchant
13
61 kgFournier
14
60 kgDruyts
15
62 kgKitchen
16
60 kgScandolara
20
52 kgCecchini
21
52 kgConfalonieri
22
56 kgPieters
23
58 kg
Weight (KG) →
Result →
71
52
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | DEIGNAN Elizabeth | 57 |
2 | HOSKING Chloe | 60 |
3 | OLDS Shelley | 54 |
4 | BRAND Lucinda | 57 |
5 | JOHANSSON Emma | 58 |
7 | VAN DIJK Ellen | 71 |
9 | D'HOORE Jolien | 63 |
10 | BRONZINI Giorgia | 54 |
12 | GUARISCHI Barbara | 57 |
13 | JEULAND-TRANCHANT Pascale | 61 |
14 | FOURNIER Roxane | 60 |
15 | DRUYTS Kelly | 62 |
16 | KITCHEN Lauren | 60 |
20 | SCANDOLARA Valentina | 52 |
21 | CECCHINI Elena | 52 |
22 | CONFALONIERI Maria Giulia | 56 |
23 | PIETERS Amy | 58 |