Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.3 * weight + 131
This means that on average for every extra kilogram weight a rider loses -1.3 positions in the result.
Contador
2
61 kgScheuneman
3
75 kgMazur
4
73 kgle Boulanger
5
70 kgDekkers
11
72 kgde Kort
19
69 kgDe Fauw
40
77 kgvan Hummel
41
64 kgSánchez
42
73 kgHernández Blázquez
45
58 kgGadret
51
58 kgJégou
52
71 kgCalzati
58
68 kgHoogerland
65
65 kgDietziker
66
67 kgBeckingsale
70
63 kgKilleen
77
65 kgFothen
78
71 kgBichot
82
67 kgCordes
91
70 kg
2
61 kgScheuneman
3
75 kgMazur
4
73 kgle Boulanger
5
70 kgDekkers
11
72 kgde Kort
19
69 kgDe Fauw
40
77 kgvan Hummel
41
64 kgSánchez
42
73 kgHernández Blázquez
45
58 kgGadret
51
58 kgJégou
52
71 kgCalzati
58
68 kgHoogerland
65
65 kgDietziker
66
67 kgBeckingsale
70
63 kgKilleen
77
65 kgFothen
78
71 kgBichot
82
67 kgCordes
91
70 kg
Weight (KG) →
Result →
77
58
2
91
# | Rider | Weight (KG) |
---|---|---|
2 | CONTADOR Alberto | 61 |
3 | SCHEUNEMAN Niels | 75 |
4 | MAZUR Peter | 73 |
5 | LE BOULANGER Yoann | 70 |
11 | DEKKERS Hans | 72 |
19 | DE KORT Koen | 69 |
40 | DE FAUW Dimitri | 77 |
41 | VAN HUMMEL Kenny | 64 |
42 | SÁNCHEZ Luis León | 73 |
45 | HERNÁNDEZ BLÁZQUEZ Jesús | 58 |
51 | GADRET John | 58 |
52 | JÉGOU Lilian | 71 |
58 | CALZATI Sylvain | 68 |
65 | HOOGERLAND Johnny | 65 |
66 | DIETZIKER Andreas | 67 |
70 | BECKINGSALE Oliver | 63 |
77 | KILLEEN Liam | 65 |
78 | FOTHEN Thomas | 71 |
82 | BICHOT Freddy | 67 |
91 | CORDES Tom | 70 |