Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.3 * weight + 148
This means that on average for every extra kilogram weight a rider loses -1.3 positions in the result.
Dekkers
1
72 kgJégou
5
71 kgMazur
9
73 kgDietziker
10
67 kgFothen
34
71 kgHoogerland
42
65 kgContador
46
61 kgle Boulanger
52
70 kgDe Fauw
59
77 kgGadret
69
58 kgHernández Blázquez
73
58 kgBichot
81
67 kgBeckingsale
87
63 kgScheuneman
92
75 kgCalzati
94
68 kgde Kort
95
69 kgvan Hummel
96
64 kgCordes
98
70 kgSánchez
100
73 kgKilleen
106
65 kg
1
72 kgJégou
5
71 kgMazur
9
73 kgDietziker
10
67 kgFothen
34
71 kgHoogerland
42
65 kgContador
46
61 kgle Boulanger
52
70 kgDe Fauw
59
77 kgGadret
69
58 kgHernández Blázquez
73
58 kgBichot
81
67 kgBeckingsale
87
63 kgScheuneman
92
75 kgCalzati
94
68 kgde Kort
95
69 kgvan Hummel
96
64 kgCordes
98
70 kgSánchez
100
73 kgKilleen
106
65 kg
Weight (KG) →
Result →
77
58
1
106
# | Rider | Weight (KG) |
---|---|---|
1 | DEKKERS Hans | 72 |
5 | JÉGOU Lilian | 71 |
9 | MAZUR Peter | 73 |
10 | DIETZIKER Andreas | 67 |
34 | FOTHEN Thomas | 71 |
42 | HOOGERLAND Johnny | 65 |
46 | CONTADOR Alberto | 61 |
52 | LE BOULANGER Yoann | 70 |
59 | DE FAUW Dimitri | 77 |
69 | GADRET John | 58 |
73 | HERNÁNDEZ BLÁZQUEZ Jesús | 58 |
81 | BICHOT Freddy | 67 |
87 | BECKINGSALE Oliver | 63 |
92 | SCHEUNEMAN Niels | 75 |
94 | CALZATI Sylvain | 68 |
95 | DE KORT Koen | 69 |
96 | VAN HUMMEL Kenny | 64 |
98 | CORDES Tom | 70 |
100 | SÁNCHEZ Luis León | 73 |
106 | KILLEEN Liam | 65 |