Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight + 9
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Dekkers
2
72 kgJégou
5
71 kgFothen
21
71 kgvan Hummel
23
64 kgle Boulanger
24
70 kgBichot
29
67 kgCordes
37
70 kgKilleen
39
65 kgde Kort
41
69 kgContador
42
61 kgMazur
50
73 kgBeckingsale
56
63 kgHernández Blázquez
60
58 kgSánchez
75
73 kgScheuneman
90
75 kgDietziker
97
67 kgCalzati
98
68 kgHoogerland
101
65 kgDe Fauw
105
77 kg
2
72 kgJégou
5
71 kgFothen
21
71 kgvan Hummel
23
64 kgle Boulanger
24
70 kgBichot
29
67 kgCordes
37
70 kgKilleen
39
65 kgde Kort
41
69 kgContador
42
61 kgMazur
50
73 kgBeckingsale
56
63 kgHernández Blázquez
60
58 kgSánchez
75
73 kgScheuneman
90
75 kgDietziker
97
67 kgCalzati
98
68 kgHoogerland
101
65 kgDe Fauw
105
77 kg
Weight (KG) →
Result →
77
58
2
105
# | Rider | Weight (KG) |
---|---|---|
2 | DEKKERS Hans | 72 |
5 | JÉGOU Lilian | 71 |
21 | FOTHEN Thomas | 71 |
23 | VAN HUMMEL Kenny | 64 |
24 | LE BOULANGER Yoann | 70 |
29 | BICHOT Freddy | 67 |
37 | CORDES Tom | 70 |
39 | KILLEEN Liam | 65 |
41 | DE KORT Koen | 69 |
42 | CONTADOR Alberto | 61 |
50 | MAZUR Peter | 73 |
56 | BECKINGSALE Oliver | 63 |
60 | HERNÁNDEZ BLÁZQUEZ Jesús | 58 |
75 | SÁNCHEZ Luis León | 73 |
90 | SCHEUNEMAN Niels | 75 |
97 | DIETZIKER Andreas | 67 |
98 | CALZATI Sylvain | 68 |
101 | HOOGERLAND Johnny | 65 |
105 | DE FAUW Dimitri | 77 |