Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 3
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Downing
1
64 kgDrujon
2
75 kgBonsergent
3
66 kgMeersman
4
63 kgPichot
6
72 kgNeyens
11
74 kgde Wilde
12
74 kgWinn
17
70 kgHerrada
19
65 kgLe Floch
20
67 kgLelay
27
67 kgCurvers
30
73 kgBelgy
36
68 kgSimon
37
65 kgGuillou
38
71 kgNeirynck
39
71 kgSantaromita
40
58 kgBodnar
44
77 kgDuret
45
62 kgDe Neef
52
75 kgPauriol
53
68 kgBlain
60
82 kgÁlvarez
61
69 kgQuéméneur
72
67 kg
1
64 kgDrujon
2
75 kgBonsergent
3
66 kgMeersman
4
63 kgPichot
6
72 kgNeyens
11
74 kgde Wilde
12
74 kgWinn
17
70 kgHerrada
19
65 kgLe Floch
20
67 kgLelay
27
67 kgCurvers
30
73 kgBelgy
36
68 kgSimon
37
65 kgGuillou
38
71 kgNeirynck
39
71 kgSantaromita
40
58 kgBodnar
44
77 kgDuret
45
62 kgDe Neef
52
75 kgPauriol
53
68 kgBlain
60
82 kgÁlvarez
61
69 kgQuéméneur
72
67 kg
Weight (KG) →
Result →
82
58
1
72
# | Rider | Weight (KG) |
---|---|---|
1 | DOWNING Russell | 64 |
2 | DRUJON Mathieu | 75 |
3 | BONSERGENT Stéphane | 66 |
4 | MEERSMAN Gianni | 63 |
6 | PICHOT Alexandre | 72 |
11 | NEYENS Maarten | 74 |
12 | DE WILDE Sjef | 74 |
17 | WINN Julian | 70 |
19 | HERRADA José | 65 |
20 | LE FLOCH Guillaume | 67 |
27 | LELAY David | 67 |
30 | CURVERS Roy | 73 |
36 | BELGY Julien | 68 |
37 | SIMON Julien | 65 |
38 | GUILLOU Florian | 71 |
39 | NEIRYNCK Kevin | 71 |
40 | SANTAROMITA Ivan | 58 |
44 | BODNAR Maciej | 77 |
45 | DURET Sébastien | 62 |
52 | DE NEEF Steven | 75 |
53 | PAURIOL Rémi | 68 |
60 | BLAIN Alexandre | 82 |
61 | ÁLVAREZ Iván | 69 |
72 | QUÉMÉNEUR Perrig | 67 |