Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 55
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Belletti
1
72 kgMertens
2
67 kgWippert
3
75 kgManzin
4
69 kgMozzato
5
67 kgEekhoff
6
75 kgDernies
7
68 kgMarit
8
72 kgOien
9
68 kgJerman
10
67 kgJarrier
11
69 kgLecamus-Lambert
12
79 kgBarbier
13
69 kgKorošec
15
75 kgDaniel
16
74 kgFarantakis
17
62 kgLienhard
18
73 kgLagrée
19
66 kgCam
20
61 kgVermeulen
21
64 kgMalle
22
60 kgAntomarchi
23
70 kgHuys
26
61 kgGuernalec
28
71 kg
1
72 kgMertens
2
67 kgWippert
3
75 kgManzin
4
69 kgMozzato
5
67 kgEekhoff
6
75 kgDernies
7
68 kgMarit
8
72 kgOien
9
68 kgJerman
10
67 kgJarrier
11
69 kgLecamus-Lambert
12
79 kgBarbier
13
69 kgKorošec
15
75 kgDaniel
16
74 kgFarantakis
17
62 kgLienhard
18
73 kgLagrée
19
66 kgCam
20
61 kgVermeulen
21
64 kgMalle
22
60 kgAntomarchi
23
70 kgHuys
26
61 kgGuernalec
28
71 kg
Weight (KG) →
Result →
79
60
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | BELLETTI Manuel | 72 |
2 | MERTENS Julian | 67 |
3 | WIPPERT Wouter | 75 |
4 | MANZIN Lorrenzo | 69 |
5 | MOZZATO Luca | 67 |
6 | EEKHOFF Nils | 75 |
7 | DERNIES Tom | 68 |
8 | MARIT Arne | 72 |
9 | OIEN Justin | 68 |
10 | JERMAN Žiga | 67 |
11 | JARRIER Benoît | 69 |
12 | LECAMUS-LAMBERT Florentin | 79 |
13 | BARBIER Pierre | 69 |
15 | KOROŠEC Rok | 75 |
16 | DANIEL Maxime | 74 |
17 | FARANTAKIS Stylianos | 62 |
18 | LIENHARD Fabian | 73 |
19 | LAGRÉE Adrien | 66 |
20 | CAM Maxime | 61 |
21 | VERMEULEN Emiel | 64 |
22 | MALLE Nicolas | 60 |
23 | ANTOMARCHI Julien | 70 |
26 | HUYS Laurens | 61 |
28 | GUERNALEC Thibault | 71 |