Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 42
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Zemlyakov
1
70 kgGidich
2
69 kgFelipe
5
58 kgSuzuki
6
58 kgGuardiola
7
65 kgUchima
11
63 kgBizhigitov
12
76 kgSulzberger
13
65 kgWhitehouse
15
58 kgCrawford
19
59 kgNieto
22
58 kgMonier
24
75 kgLebas
25
65 kgAmbrose
26
66 kgOconer
28
59 kgGuy
33
67 kgGlasspool
34
73.9 kgSumiyoshi
37
56 kgHirai
39
63 kgSaleh
41
58 kgAso
48
67 kgAlhammadi
50
60 kg
1
70 kgGidich
2
69 kgFelipe
5
58 kgSuzuki
6
58 kgGuardiola
7
65 kgUchima
11
63 kgBizhigitov
12
76 kgSulzberger
13
65 kgWhitehouse
15
58 kgCrawford
19
59 kgNieto
22
58 kgMonier
24
75 kgLebas
25
65 kgAmbrose
26
66 kgOconer
28
59 kgGuy
33
67 kgGlasspool
34
73.9 kgSumiyoshi
37
56 kgHirai
39
63 kgSaleh
41
58 kgAso
48
67 kgAlhammadi
50
60 kg
Weight (KG) →
Result →
76
56
1
50
# | Rider | Weight (KG) |
---|---|---|
1 | ZEMLYAKOV Oleg | 70 |
2 | GIDICH Yevgeniy | 69 |
5 | FELIPE Marcelo | 58 |
6 | SUZUKI Ryu | 58 |
7 | GUARDIOLA Salvador | 65 |
11 | UCHIMA Kohei | 63 |
12 | BIZHIGITOV Zhandos | 76 |
13 | SULZBERGER Wesley | 65 |
15 | WHITEHOUSE Daniel | 58 |
19 | CRAWFORD Jai | 59 |
22 | NIETO Edgar | 58 |
24 | MONIER Damien | 75 |
25 | LEBAS Thomas | 65 |
26 | AMBROSE Scott | 66 |
28 | OCONER George | 59 |
33 | GUY Timothy | 67 |
34 | GLASSPOOL James | 73.9 |
37 | SUMIYOSHI Kota | 56 |
39 | HIRAI Eiichi | 63 |
41 | SALEH Mohd Zamri | 58 |
48 | ASO Keisuke | 67 |
50 | ALHAMMADI Sultan Hassan | 60 |