Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 54
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Guy
1
67 kgSulzberger
4
65 kgGlasspool
5
73.9 kgSuzuki
6
58 kgGidich
7
69 kgGuardiola
8
65 kgFelipe
16
58 kgBizhigitov
18
76 kgCrawford
19
59 kgZemlyakov
21
70 kgWhitehouse
22
58 kgSumiyoshi
23
56 kgNieto
25
58 kgHirai
27
63 kgMonier
31
75 kgOconer
32
59 kgLebas
34
65 kgAmbrose
35
66 kgUchima
37
63 kgSaleh
41
58 kgAso
45
67 kgAlhammadi
50
60 kg
1
67 kgSulzberger
4
65 kgGlasspool
5
73.9 kgSuzuki
6
58 kgGidich
7
69 kgGuardiola
8
65 kgFelipe
16
58 kgBizhigitov
18
76 kgCrawford
19
59 kgZemlyakov
21
70 kgWhitehouse
22
58 kgSumiyoshi
23
56 kgNieto
25
58 kgHirai
27
63 kgMonier
31
75 kgOconer
32
59 kgLebas
34
65 kgAmbrose
35
66 kgUchima
37
63 kgSaleh
41
58 kgAso
45
67 kgAlhammadi
50
60 kg
Weight (KG) →
Result →
76
56
1
50
# | Rider | Weight (KG) |
---|---|---|
1 | GUY Timothy | 67 |
4 | SULZBERGER Wesley | 65 |
5 | GLASSPOOL James | 73.9 |
6 | SUZUKI Ryu | 58 |
7 | GIDICH Yevgeniy | 69 |
8 | GUARDIOLA Salvador | 65 |
16 | FELIPE Marcelo | 58 |
18 | BIZHIGITOV Zhandos | 76 |
19 | CRAWFORD Jai | 59 |
21 | ZEMLYAKOV Oleg | 70 |
22 | WHITEHOUSE Daniel | 58 |
23 | SUMIYOSHI Kota | 56 |
25 | NIETO Edgar | 58 |
27 | HIRAI Eiichi | 63 |
31 | MONIER Damien | 75 |
32 | OCONER George | 59 |
34 | LEBAS Thomas | 65 |
35 | AMBROSE Scott | 66 |
37 | UCHIMA Kohei | 63 |
41 | SALEH Mohd Zamri | 58 |
45 | ASO Keisuke | 67 |
50 | ALHAMMADI Sultan Hassan | 60 |