Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 50
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Monier
4
75 kgCrawford
5
59 kgNieto
6
58 kgHill
7
67 kgGrijalba
8
61 kgGuardiola
9
65 kgSuzuki
10
58 kgKhalmuratov
11
68 kgEarle
12
70 kgLebas
13
65 kgWhitehouse
14
58 kgGaledo
16
58 kgShushemoin
18
62 kgSchumacher
19
71 kgIshibashi
23
68 kgAzman
28
57 kgNakajima
29
64 kgGuy
33
67 kgOconer
38
59 kgTsubaki
41
62 kgHirai
50
63 kgTokuda
51
65 kgOkubo
52
70 kgGoh
56
54 kg
4
75 kgCrawford
5
59 kgNieto
6
58 kgHill
7
67 kgGrijalba
8
61 kgGuardiola
9
65 kgSuzuki
10
58 kgKhalmuratov
11
68 kgEarle
12
70 kgLebas
13
65 kgWhitehouse
14
58 kgGaledo
16
58 kgShushemoin
18
62 kgSchumacher
19
71 kgIshibashi
23
68 kgAzman
28
57 kgNakajima
29
64 kgGuy
33
67 kgOconer
38
59 kgTsubaki
41
62 kgHirai
50
63 kgTokuda
51
65 kgOkubo
52
70 kgGoh
56
54 kg
Weight (KG) →
Result →
75
54
4
56
# | Rider | Weight (KG) |
---|---|---|
4 | MONIER Damien | 75 |
5 | CRAWFORD Jai | 59 |
6 | NIETO Edgar | 58 |
7 | HILL Benjamin | 67 |
8 | GRIJALBA Fernando | 61 |
9 | GUARDIOLA Salvador | 65 |
10 | SUZUKI Ryu | 58 |
11 | KHALMURATOV Muradjan | 68 |
12 | EARLE Nathan | 70 |
13 | LEBAS Thomas | 65 |
14 | WHITEHOUSE Daniel | 58 |
16 | GALEDO Mark John Lexer | 58 |
18 | SHUSHEMOIN Alexandr | 62 |
19 | SCHUMACHER Stefan | 71 |
23 | ISHIBASHI Manabu | 68 |
28 | AZMAN Muhamad Zawawi | 57 |
29 | NAKAJIMA Yasuharu | 64 |
33 | GUY Timothy | 67 |
38 | OCONER George | 59 |
41 | TSUBAKI Hiroshi | 62 |
50 | HIRAI Eiichi | 63 |
51 | TOKUDA Suguru | 65 |
52 | OKUBO Jin | 70 |
56 | GOH Choon Huat | 54 |