Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 42
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Devolder
1
72 kgBoonen
6
82 kgWeissinger
7
74 kgTankink
8
71 kgMutsaars
11
67 kgVan Goolen
14
70 kgSteegmans
15
82 kgVanlandschoot
16
67 kgGadret
17
58 kgVerstraeten
18
65 kgCappelle
20
71 kgSentjens
22
75 kgCarrara
23
67 kgCoutouly
26
72 kgWegmann
27
60 kgHiekmann
28
70 kgMuravyev
29
75 kg
1
72 kgBoonen
6
82 kgWeissinger
7
74 kgTankink
8
71 kgMutsaars
11
67 kgVan Goolen
14
70 kgSteegmans
15
82 kgVanlandschoot
16
67 kgGadret
17
58 kgVerstraeten
18
65 kgCappelle
20
71 kgSentjens
22
75 kgCarrara
23
67 kgCoutouly
26
72 kgWegmann
27
60 kgHiekmann
28
70 kgMuravyev
29
75 kg
Weight (KG) →
Result →
82
58
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | DEVOLDER Stijn | 72 |
6 | BOONEN Tom | 82 |
7 | WEISSINGER René | 74 |
8 | TANKINK Bram | 71 |
11 | MUTSAARS Ronald | 67 |
14 | VAN GOOLEN Jurgen | 70 |
15 | STEEGMANS Gert | 82 |
16 | VANLANDSCHOOT James | 67 |
17 | GADRET John | 58 |
18 | VERSTRAETEN Jan | 65 |
20 | CAPPELLE Andy | 71 |
22 | SENTJENS Roy | 75 |
23 | CARRARA Matteo | 67 |
26 | COUTOULY Cédric | 72 |
27 | WEGMANN Fabian | 60 |
28 | HIEKMANN Torsten | 70 |
29 | MURAVYEV Dmitriy | 75 |