Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 18
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Vanlandschoot
1
67 kgWegmann
3
60 kgGadret
7
58 kgDevolder
8
72 kgBoonen
9
82 kgTankink
13
71 kgWeissinger
15
74 kgMutsaars
16
67 kgMuravyev
17
75 kgVerstraeten
21
65 kgCappelle
22
71 kgCoutouly
23
72 kgSentjens
25
75 kgVan Goolen
27
70 kgCarrara
28
67 kgSteegmans
29
82 kgHiekmann
30
70 kg
1
67 kgWegmann
3
60 kgGadret
7
58 kgDevolder
8
72 kgBoonen
9
82 kgTankink
13
71 kgWeissinger
15
74 kgMutsaars
16
67 kgMuravyev
17
75 kgVerstraeten
21
65 kgCappelle
22
71 kgCoutouly
23
72 kgSentjens
25
75 kgVan Goolen
27
70 kgCarrara
28
67 kgSteegmans
29
82 kgHiekmann
30
70 kg
Weight (KG) →
Result →
82
58
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | VANLANDSCHOOT James | 67 |
3 | WEGMANN Fabian | 60 |
7 | GADRET John | 58 |
8 | DEVOLDER Stijn | 72 |
9 | BOONEN Tom | 82 |
13 | TANKINK Bram | 71 |
15 | WEISSINGER René | 74 |
16 | MUTSAARS Ronald | 67 |
17 | MURAVYEV Dmitriy | 75 |
21 | VERSTRAETEN Jan | 65 |
22 | CAPPELLE Andy | 71 |
23 | COUTOULY Cédric | 72 |
25 | SENTJENS Roy | 75 |
27 | VAN GOOLEN Jurgen | 70 |
28 | CARRARA Matteo | 67 |
29 | STEEGMANS Gert | 82 |
30 | HIEKMANN Torsten | 70 |