Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 21
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Rosseler
1
78 kgVansummeren
3
79 kgDe Weert
4
70 kgGilbert
5
75 kgMcCarty
6
68 kgVan den Broeck
8
69 kgSieberg
9
80 kgPosthuma
10
76 kgCoutouly
13
72 kgNuyens
14
68 kgVandborg
15
75 kgCoyot
16
76 kgGiling
17
72 kgMouris
20
91 kgScheuneman
21
75 kgKohl
22
61 kgDe Vocht
23
78 kgMonfort
25
66 kg
1
78 kgVansummeren
3
79 kgDe Weert
4
70 kgGilbert
5
75 kgMcCarty
6
68 kgVan den Broeck
8
69 kgSieberg
9
80 kgPosthuma
10
76 kgCoutouly
13
72 kgNuyens
14
68 kgVandborg
15
75 kgCoyot
16
76 kgGiling
17
72 kgMouris
20
91 kgScheuneman
21
75 kgKohl
22
61 kgDe Vocht
23
78 kgMonfort
25
66 kg
Weight (KG) →
Result →
91
61
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | ROSSELER Sébastien | 78 |
3 | VANSUMMEREN Johan | 79 |
4 | DE WEERT Kevin | 70 |
5 | GILBERT Philippe | 75 |
6 | MCCARTY Jonathan Patrick | 68 |
8 | VAN DEN BROECK Jurgen | 69 |
9 | SIEBERG Marcel | 80 |
10 | POSTHUMA Joost | 76 |
13 | COUTOULY Cédric | 72 |
14 | NUYENS Nick | 68 |
15 | VANDBORG Brian Bach | 75 |
16 | COYOT Arnaud | 76 |
17 | GILING Bas | 72 |
20 | MOURIS Jens | 91 |
21 | SCHEUNEMAN Niels | 75 |
22 | KOHL Bernhard | 61 |
23 | DE VOCHT Wim | 78 |
25 | MONFORT Maxime | 66 |