Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 68
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Rosseler
1
78 kgPosthuma
2
76 kgVansummeren
3
79 kgMouris
4
91 kgNuyens
5
68 kgVan den Broeck
6
69 kgDe Vocht
7
78 kgDockx
8
64 kgDe Weert
9
70 kgVandborg
12
75 kgVaugrenard
13
72 kgGiling
14
72 kgDekkers
15
72 kgGilbert
17
75 kgMugerli
23
68 kgMcCarty
24
68 kgKohl
27
61 kgMonfort
29
66 kg
1
78 kgPosthuma
2
76 kgVansummeren
3
79 kgMouris
4
91 kgNuyens
5
68 kgVan den Broeck
6
69 kgDe Vocht
7
78 kgDockx
8
64 kgDe Weert
9
70 kgVandborg
12
75 kgVaugrenard
13
72 kgGiling
14
72 kgDekkers
15
72 kgGilbert
17
75 kgMugerli
23
68 kgMcCarty
24
68 kgKohl
27
61 kgMonfort
29
66 kg
Weight (KG) →
Result →
91
61
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | ROSSELER Sébastien | 78 |
2 | POSTHUMA Joost | 76 |
3 | VANSUMMEREN Johan | 79 |
4 | MOURIS Jens | 91 |
5 | NUYENS Nick | 68 |
6 | VAN DEN BROECK Jurgen | 69 |
7 | DE VOCHT Wim | 78 |
8 | DOCKX Bart | 64 |
9 | DE WEERT Kevin | 70 |
12 | VANDBORG Brian Bach | 75 |
13 | VAUGRENARD Benoît | 72 |
14 | GILING Bas | 72 |
15 | DEKKERS Hans | 72 |
17 | GILBERT Philippe | 75 |
23 | MUGERLI Matej | 68 |
24 | MCCARTY Jonathan Patrick | 68 |
27 | KOHL Bernhard | 61 |
29 | MONFORT Maxime | 66 |