Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 75
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Rosseler
1
78 kgScheuneman
2
75 kgPosthuma
3
76 kgDe Vocht
4
78 kgVan den Broeck
5
69 kgDekkers
6
72 kgYates
7
73 kgMonier
8
75 kgSutherland
9
75 kgDockx
10
64 kgde Kort
13
69 kgIngels
15
70 kgVansummeren
16
79 kgLagutin
18
68 kgCaethoven
20
67 kgFarrar
21
73 kgVeelers
24
75 kgGiling
25
72 kgvan Hummel
30
64 kg
1
78 kgScheuneman
2
75 kgPosthuma
3
76 kgDe Vocht
4
78 kgVan den Broeck
5
69 kgDekkers
6
72 kgYates
7
73 kgMonier
8
75 kgSutherland
9
75 kgDockx
10
64 kgde Kort
13
69 kgIngels
15
70 kgVansummeren
16
79 kgLagutin
18
68 kgCaethoven
20
67 kgFarrar
21
73 kgVeelers
24
75 kgGiling
25
72 kgvan Hummel
30
64 kg
Weight (KG) →
Result →
79
64
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | ROSSELER Sébastien | 78 |
2 | SCHEUNEMAN Niels | 75 |
3 | POSTHUMA Joost | 76 |
4 | DE VOCHT Wim | 78 |
5 | VAN DEN BROECK Jurgen | 69 |
6 | DEKKERS Hans | 72 |
7 | YATES Jeremy | 73 |
8 | MONIER Damien | 75 |
9 | SUTHERLAND Rory | 75 |
10 | DOCKX Bart | 64 |
13 | DE KORT Koen | 69 |
15 | INGELS Nick | 70 |
16 | VANSUMMEREN Johan | 79 |
18 | LAGUTIN Sergey | 68 |
20 | CAETHOVEN Steven | 67 |
21 | FARRAR Tyler | 73 |
24 | VEELERS Tom | 75 |
25 | GILING Bas | 72 |
30 | VAN HUMMEL Kenny | 64 |