Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 1
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Dekker
1
69 kgGiling
2
72 kgde Kort
3
69 kgVastaranta
4
63 kgCornu
5
78 kgKeisse
6
72 kgYates
7
73 kgElijzen
8
80 kgPauwels
9
65 kgChristensen
10
69 kgVanheule
11
76 kgSutherland
12
75 kgFarrar
13
73 kgBrammeier
16
72 kgCozza
18
70 kgKaisen
20
82 kgRoelandts
21
78 kgIngels
22
70 kgMeersman
23
63 kgBurghardt
24
75 kgDe Greef
25
77 kgMonnerais
27
70 kgIsta
28
70 kg
1
69 kgGiling
2
72 kgde Kort
3
69 kgVastaranta
4
63 kgCornu
5
78 kgKeisse
6
72 kgYates
7
73 kgElijzen
8
80 kgPauwels
9
65 kgChristensen
10
69 kgVanheule
11
76 kgSutherland
12
75 kgFarrar
13
73 kgBrammeier
16
72 kgCozza
18
70 kgKaisen
20
82 kgRoelandts
21
78 kgIngels
22
70 kgMeersman
23
63 kgBurghardt
24
75 kgDe Greef
25
77 kgMonnerais
27
70 kgIsta
28
70 kg
Weight (KG) →
Result →
82
63
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | DEKKER Thomas | 69 |
2 | GILING Bas | 72 |
3 | DE KORT Koen | 69 |
4 | VASTARANTA Jukka | 63 |
5 | CORNU Dominique | 78 |
6 | KEISSE Iljo | 72 |
7 | YATES Jeremy | 73 |
8 | ELIJZEN Michiel | 80 |
9 | PAUWELS Serge | 65 |
10 | CHRISTENSEN Mads | 69 |
11 | VANHEULE Bart | 76 |
12 | SUTHERLAND Rory | 75 |
13 | FARRAR Tyler | 73 |
16 | BRAMMEIER Matt | 72 |
18 | COZZA Steven | 70 |
20 | KAISEN Olivier | 82 |
21 | ROELANDTS Jürgen | 78 |
22 | INGELS Nick | 70 |
23 | MEERSMAN Gianni | 63 |
24 | BURGHARDT Marcus | 75 |
25 | DE GREEF Francis | 77 |
27 | MONNERAIS Cyrille | 70 |
28 | ISTA Kevyn | 70 |