Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 15
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Giling
1
72 kgSutherland
2
75 kgDekker
3
69 kgWeylandt
4
72 kgBurghardt
6
75 kgBreschel
7
70 kgVanheule
8
76 kgLund
9
65 kgRavard
14
62 kgMeersman
15
63 kgVastaranta
16
63 kgKeisse
17
72 kgGreipel
18
80 kgde Kort
19
69 kgIngels
20
70 kgVandewalle
22
74 kgYates
24
73 kgPauwels
26
65 kgHabeaux
28
68 kgCornu
29
78 kgVerbist
30
73 kg
1
72 kgSutherland
2
75 kgDekker
3
69 kgWeylandt
4
72 kgBurghardt
6
75 kgBreschel
7
70 kgVanheule
8
76 kgLund
9
65 kgRavard
14
62 kgMeersman
15
63 kgVastaranta
16
63 kgKeisse
17
72 kgGreipel
18
80 kgde Kort
19
69 kgIngels
20
70 kgVandewalle
22
74 kgYates
24
73 kgPauwels
26
65 kgHabeaux
28
68 kgCornu
29
78 kgVerbist
30
73 kg
Weight (KG) →
Result →
80
62
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | GILING Bas | 72 |
2 | SUTHERLAND Rory | 75 |
3 | DEKKER Thomas | 69 |
4 | WEYLANDT Wouter | 72 |
6 | BURGHARDT Marcus | 75 |
7 | BRESCHEL Matti | 70 |
8 | VANHEULE Bart | 76 |
9 | LUND Anders | 65 |
14 | RAVARD Anthony | 62 |
15 | MEERSMAN Gianni | 63 |
16 | VASTARANTA Jukka | 63 |
17 | KEISSE Iljo | 72 |
18 | GREIPEL André | 80 |
19 | DE KORT Koen | 69 |
20 | INGELS Nick | 70 |
22 | VANDEWALLE Kristof | 74 |
24 | YATES Jeremy | 73 |
26 | PAUWELS Serge | 65 |
28 | HABEAUX Grégory | 68 |
29 | CORNU Dominique | 78 |
30 | VERBIST Evert | 73 |