Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 6
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Kozhatayev
1
62 kgVallée
2
79 kgSilvestre
3
78 kgDufrasne
5
70 kgJanssens
6
74 kgvan Zandbeek
7
72 kgStalnov
8
63 kgDe Vos
9
72 kgCraddock
10
69 kgvan der Lijke
11
61 kgBenoot
12
72 kgBeukeboom
14
88 kgFarazijn
16
73.5 kgDemoitié
17
69 kgZepuntke
18
76 kgPutt
19
75 kgVergaerde
20
74 kgDe Clercq
21
67 kgDeclercq
23
78 kgDe Bie
24
65 kgDe Buyst
25
72 kgDunne
27
88 kg
1
62 kgVallée
2
79 kgSilvestre
3
78 kgDufrasne
5
70 kgJanssens
6
74 kgvan Zandbeek
7
72 kgStalnov
8
63 kgDe Vos
9
72 kgCraddock
10
69 kgvan der Lijke
11
61 kgBenoot
12
72 kgBeukeboom
14
88 kgFarazijn
16
73.5 kgDemoitié
17
69 kgZepuntke
18
76 kgPutt
19
75 kgVergaerde
20
74 kgDe Clercq
21
67 kgDeclercq
23
78 kgDe Bie
24
65 kgDe Buyst
25
72 kgDunne
27
88 kg
Weight (KG) →
Result →
88
61
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | KOZHATAYEV Bakhtiyar | 62 |
2 | VALLÉE Boris | 79 |
3 | SILVESTRE Fábio | 78 |
5 | DUFRASNE Jonathan | 70 |
6 | JANSSENS Jimmy | 74 |
7 | VAN ZANDBEEK Ronan | 72 |
8 | STALNOV Nikita | 63 |
9 | DE VOS Gertjan | 72 |
10 | CRADDOCK Lawson | 69 |
11 | VAN DER LIJKE Nick | 61 |
12 | BENOOT Tiesj | 72 |
14 | BEUKEBOOM Dion | 88 |
16 | FARAZIJN Maxime | 73.5 |
17 | DEMOITIÉ Antoine | 69 |
18 | ZEPUNTKE Ruben | 76 |
19 | PUTT Tanner | 75 |
20 | VERGAERDE Otto | 74 |
21 | DE CLERCQ Angelo | 67 |
23 | DECLERCQ Tim | 78 |
24 | DE BIE Sean | 65 |
25 | DE BUYST Jasper | 72 |
27 | DUNNE Conor | 88 |