Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 18
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Looij
1
75 kgBenoot
2
72 kgGoolaerts
4
80 kgDoull
5
71 kgBiedermann
6
67 kgDibben
7
78 kgKirsch
9
78 kgVan Lerberghe
10
83 kgMannaerts
11
73 kgFranck
12
86 kgKozhatayev
13
62 kgFrison
14
84 kgTeunissen
15
73 kgCoenen
16
69 kgDemoitié
18
69 kgZepuntke
19
76 kgMyngheer
21
74 kgVan Zummeren
23
73 kg
1
75 kgBenoot
2
72 kgGoolaerts
4
80 kgDoull
5
71 kgBiedermann
6
67 kgDibben
7
78 kgKirsch
9
78 kgVan Lerberghe
10
83 kgMannaerts
11
73 kgFranck
12
86 kgKozhatayev
13
62 kgFrison
14
84 kgTeunissen
15
73 kgCoenen
16
69 kgDemoitié
18
69 kgZepuntke
19
76 kgMyngheer
21
74 kgVan Zummeren
23
73 kg
Weight (KG) →
Result →
86
62
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | LOOIJ André | 75 |
2 | BENOOT Tiesj | 72 |
4 | GOOLAERTS Michael | 80 |
5 | DOULL Owain | 71 |
6 | BIEDERMANN Daniel | 67 |
7 | DIBBEN Jonathan | 78 |
9 | KIRSCH Alex | 78 |
10 | VAN LERBERGHE Bert | 83 |
11 | MANNAERTS Jelle | 73 |
12 | FRANCK Eamon Lucas | 86 |
13 | KOZHATAYEV Bakhtiyar | 62 |
14 | FRISON Frederik | 84 |
15 | TEUNISSEN Mike | 73 |
16 | COENEN Dennis | 69 |
18 | DEMOITIÉ Antoine | 69 |
19 | ZEPUNTKE Ruben | 76 |
21 | MYNGHEER Daan | 74 |
23 | VAN ZUMMEREN Stef | 73 |