Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 4
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Vereecken
1
72 kgKrieger
4
71 kgMyngheer
5
74 kgBol
6
83 kgBarta
8
61 kgDoull
9
71 kgFarazijn
10
73.5 kgMaas
11
70 kgCornu
12
66 kgPeters
13
72 kgDeclercq
15
67 kgDe Bondt
16
73 kgLammertink
17
68 kgCalmejane
18
70 kgStrakhov
21
70 kgBax
23
78 kgManakov
24
77 kgTanner
25
76 kgRäim
26
69 kg
1
72 kgKrieger
4
71 kgMyngheer
5
74 kgBol
6
83 kgBarta
8
61 kgDoull
9
71 kgFarazijn
10
73.5 kgMaas
11
70 kgCornu
12
66 kgPeters
13
72 kgDeclercq
15
67 kgDe Bondt
16
73 kgLammertink
17
68 kgCalmejane
18
70 kgStrakhov
21
70 kgBax
23
78 kgManakov
24
77 kgTanner
25
76 kgRäim
26
69 kg
Weight (KG) →
Result →
83
61
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | VEREECKEN Nicolas | 72 |
4 | KRIEGER Alexander | 71 |
5 | MYNGHEER Daan | 74 |
6 | BOL Cees | 83 |
8 | BARTA Will | 61 |
9 | DOULL Owain | 71 |
10 | FARAZIJN Maxime | 73.5 |
11 | MAAS Jan | 70 |
12 | CORNU Jérémy | 66 |
13 | PETERS Nans | 72 |
15 | DECLERCQ Benjamin | 67 |
16 | DE BONDT Dries | 73 |
17 | LAMMERTINK Steven | 68 |
18 | CALMEJANE Lilian | 70 |
21 | STRAKHOV Dmitry | 70 |
23 | BAX Sjoerd | 78 |
24 | MANAKOV Victor | 77 |
25 | TANNER Jake | 76 |
26 | RÄIM Mihkel | 69 |