Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 41
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Doull
1
71 kgFarazijn
2
73.5 kgCalmejane
3
70 kgLammertink
4
68 kgStrakhov
5
70 kgPeters
7
72 kgDe Bondt
8
73 kgKrieger
9
71 kgCardis
10
72 kgGrellier
11
65 kgMertz
13
70 kgHavik
14
73 kgCornu
15
66 kgVereecken
17
72 kgBol
19
83 kgBax
24
78 kgManakov
25
77 kgBarta
26
61 kgDe Paepe
27
75 kgCasier
28
71 kgTusveld
29
70 kgMeijers
30
68 kgDeclercq
33
67 kgMarchand
35
61 kg
1
71 kgFarazijn
2
73.5 kgCalmejane
3
70 kgLammertink
4
68 kgStrakhov
5
70 kgPeters
7
72 kgDe Bondt
8
73 kgKrieger
9
71 kgCardis
10
72 kgGrellier
11
65 kgMertz
13
70 kgHavik
14
73 kgCornu
15
66 kgVereecken
17
72 kgBol
19
83 kgBax
24
78 kgManakov
25
77 kgBarta
26
61 kgDe Paepe
27
75 kgCasier
28
71 kgTusveld
29
70 kgMeijers
30
68 kgDeclercq
33
67 kgMarchand
35
61 kg
Weight (KG) →
Result →
83
61
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | DOULL Owain | 71 |
2 | FARAZIJN Maxime | 73.5 |
3 | CALMEJANE Lilian | 70 |
4 | LAMMERTINK Steven | 68 |
5 | STRAKHOV Dmitry | 70 |
7 | PETERS Nans | 72 |
8 | DE BONDT Dries | 73 |
9 | KRIEGER Alexander | 71 |
10 | CARDIS Romain | 72 |
11 | GRELLIER Fabien | 65 |
13 | MERTZ Rémy | 70 |
14 | HAVIK Piotr | 73 |
15 | CORNU Jérémy | 66 |
17 | VEREECKEN Nicolas | 72 |
19 | BOL Cees | 83 |
24 | BAX Sjoerd | 78 |
25 | MANAKOV Victor | 77 |
26 | BARTA Will | 61 |
27 | DE PAEPE Johannes | 75 |
28 | CASIER Arne | 71 |
29 | TUSVELD Martijn | 70 |
30 | MEIJERS Jeroen | 68 |
33 | DECLERCQ Benjamin | 67 |
35 | MARCHAND Gianni | 61 |