Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Doull
1
71 kgFournier
2
71 kgCalmejane
3
70 kgPeters
4
72 kgLammertink
5
68 kgKrieger
6
71 kgCardis
7
72 kgStrakhov
8
70 kgDe Bondt
9
73 kgGrellier
10
65 kgMertz
11
70 kgHavik
12
73 kgFarazijn
13
73.5 kgCornu
14
66 kgOien
17
68 kgMathis
18
71 kgBax
22
78 kgManakov
23
77 kgCasier
24
71 kgTusveld
25
70 kgDeclercq
28
67 kgVereecken
29
72 kgMarchand
30
61 kg
1
71 kgFournier
2
71 kgCalmejane
3
70 kgPeters
4
72 kgLammertink
5
68 kgKrieger
6
71 kgCardis
7
72 kgStrakhov
8
70 kgDe Bondt
9
73 kgGrellier
10
65 kgMertz
11
70 kgHavik
12
73 kgFarazijn
13
73.5 kgCornu
14
66 kgOien
17
68 kgMathis
18
71 kgBax
22
78 kgManakov
23
77 kgCasier
24
71 kgTusveld
25
70 kgDeclercq
28
67 kgVereecken
29
72 kgMarchand
30
61 kg
Weight (KG) →
Result →
78
61
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | DOULL Owain | 71 |
2 | FOURNIER Marc | 71 |
3 | CALMEJANE Lilian | 70 |
4 | PETERS Nans | 72 |
5 | LAMMERTINK Steven | 68 |
6 | KRIEGER Alexander | 71 |
7 | CARDIS Romain | 72 |
8 | STRAKHOV Dmitry | 70 |
9 | DE BONDT Dries | 73 |
10 | GRELLIER Fabien | 65 |
11 | MERTZ Rémy | 70 |
12 | HAVIK Piotr | 73 |
13 | FARAZIJN Maxime | 73.5 |
14 | CORNU Jérémy | 66 |
17 | OIEN Justin | 68 |
18 | MATHIS Marco | 71 |
22 | BAX Sjoerd | 78 |
23 | MANAKOV Victor | 77 |
24 | CASIER Arne | 71 |
25 | TUSVELD Martijn | 70 |
28 | DECLERCQ Benjamin | 67 |
29 | VEREECKEN Nicolas | 72 |
30 | MARCHAND Gianni | 61 |