Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 35
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Lawless
1
72 kgPhilipsen
2
75 kgAuer
3
73 kgMenten
4
68 kgTaminiaux
5
74 kgVan Gompel
6
70 kgPicoux
8
71 kgBeullens
9
79 kgSix
10
72 kgMüller
11
74 kgKrieger
12
71 kgPowless
13
67 kgDunbar
14
57 kgTurgis
15
61 kgWarlop
16
71 kgScotson
18
77 kgSchlemmer
19
64 kgDe Poorter
20
68 kgVerwilst
21
68 kgEekhoff
22
75 kg
1
72 kgPhilipsen
2
75 kgAuer
3
73 kgMenten
4
68 kgTaminiaux
5
74 kgVan Gompel
6
70 kgPicoux
8
71 kgBeullens
9
79 kgSix
10
72 kgMüller
11
74 kgKrieger
12
71 kgPowless
13
67 kgDunbar
14
57 kgTurgis
15
61 kgWarlop
16
71 kgScotson
18
77 kgSchlemmer
19
64 kgDe Poorter
20
68 kgVerwilst
21
68 kgEekhoff
22
75 kg
Weight (KG) →
Result →
79
57
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | LAWLESS Chris | 72 |
2 | PHILIPSEN Jasper | 75 |
3 | AUER Daniel | 73 |
4 | MENTEN Milan | 68 |
5 | TAMINIAUX Lionel | 74 |
6 | VAN GOMPEL Mathias | 70 |
8 | PICOUX Maximilien | 71 |
9 | BEULLENS Cedric | 79 |
10 | SIX Franklin | 72 |
11 | MÜLLER Patrick | 74 |
12 | KRIEGER Alexander | 71 |
13 | POWLESS Neilson | 67 |
14 | DUNBAR Eddie | 57 |
15 | TURGIS Tanguy | 61 |
16 | WARLOP Jordi | 71 |
18 | SCOTSON Callum | 77 |
19 | SCHLEMMER Lukas | 64 |
20 | DE POORTER Maxime | 68 |
21 | VERWILST Aaron | 68 |
22 | EEKHOFF Nils | 75 |