Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Philipsen
1
75 kgDewulf
2
74 kgGarrison
3
76 kgBarta
4
61 kgCullaigh
5
78 kgEekhoff
6
75 kgThijssen
7
74 kgWirtgen
8
77 kgWeemaes
9
73 kgTaminiaux
10
74 kgD'heygere
11
76 kgKooistra
12
74 kgJohansen
13
77 kgMaciejuk
14
78 kgFouché
15
71 kgVingegaard
16
58 kgVan Moer
17
79 kgSalby
18
68 kgHoole
22
81 kgWillems
23
67 kgGamper
24
86 kgHirschi
25
61 kgMärkl
26
70 kgWirtgen
29
63 kg
1
75 kgDewulf
2
74 kgGarrison
3
76 kgBarta
4
61 kgCullaigh
5
78 kgEekhoff
6
75 kgThijssen
7
74 kgWirtgen
8
77 kgWeemaes
9
73 kgTaminiaux
10
74 kgD'heygere
11
76 kgKooistra
12
74 kgJohansen
13
77 kgMaciejuk
14
78 kgFouché
15
71 kgVingegaard
16
58 kgVan Moer
17
79 kgSalby
18
68 kgHoole
22
81 kgWillems
23
67 kgGamper
24
86 kgHirschi
25
61 kgMärkl
26
70 kgWirtgen
29
63 kg
Weight (KG) →
Result →
86
58
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | PHILIPSEN Jasper | 75 |
2 | DEWULF Stan | 74 |
3 | GARRISON Ian | 76 |
4 | BARTA Will | 61 |
5 | CULLAIGH Gabriel | 78 |
6 | EEKHOFF Nils | 75 |
7 | THIJSSEN Gerben | 74 |
8 | WIRTGEN Tom | 77 |
9 | WEEMAES Sasha | 73 |
10 | TAMINIAUX Lionel | 74 |
11 | D'HEYGERE Gil | 76 |
12 | KOOISTRA Marten | 74 |
13 | JOHANSEN Julius | 77 |
14 | MACIEJUK Filip | 78 |
15 | FOUCHÉ James | 71 |
16 | VINGEGAARD Jonas | 58 |
17 | VAN MOER Brent | 79 |
18 | SALBY Alexander | 68 |
22 | HOOLE Daan | 81 |
23 | WILLEMS Thimo | 67 |
24 | GAMPER Florian | 86 |
25 | HIRSCHI Marc | 61 |
26 | MÄRKL Niklas | 70 |
29 | WIRTGEN Luc | 63 |