Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 36
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Philipsen
1
75 kgEekhoff
2
75 kgCullaigh
3
78 kgThijssen
4
74 kgZijlaard
5
73 kgTaminiaux
6
74 kgWeemaes
7
73 kgD'heygere
8
76 kgKooistra
9
74 kgGarrison
10
76 kgWirtgen
11
77 kgJohansen
12
77 kgSalby
13
68 kgFouché
14
71 kgWillems
16
67 kgGamper
17
86 kgDewulf
20
74 kgWirtgen
21
63 kg
1
75 kgEekhoff
2
75 kgCullaigh
3
78 kgThijssen
4
74 kgZijlaard
5
73 kgTaminiaux
6
74 kgWeemaes
7
73 kgD'heygere
8
76 kgKooistra
9
74 kgGarrison
10
76 kgWirtgen
11
77 kgJohansen
12
77 kgSalby
13
68 kgFouché
14
71 kgWillems
16
67 kgGamper
17
86 kgDewulf
20
74 kgWirtgen
21
63 kg
Weight (KG) →
Result →
86
63
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | PHILIPSEN Jasper | 75 |
2 | EEKHOFF Nils | 75 |
3 | CULLAIGH Gabriel | 78 |
4 | THIJSSEN Gerben | 74 |
5 | ZIJLAARD Maikel | 73 |
6 | TAMINIAUX Lionel | 74 |
7 | WEEMAES Sasha | 73 |
8 | D'HEYGERE Gil | 76 |
9 | KOOISTRA Marten | 74 |
10 | GARRISON Ian | 76 |
11 | WIRTGEN Tom | 77 |
12 | JOHANSEN Julius | 77 |
13 | SALBY Alexander | 68 |
14 | FOUCHÉ James | 71 |
16 | WILLEMS Thimo | 67 |
17 | GAMPER Florian | 86 |
20 | DEWULF Stan | 74 |
21 | WIRTGEN Luc | 63 |