Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 39
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Philipsen
1
75 kgCullaigh
2
78 kgEekhoff
3
75 kgThijssen
4
74 kgGarrison
5
76 kgDewulf
6
74 kgWeemaes
7
73 kgBarta
8
61 kgWirtgen
9
77 kgZijlaard
10
73 kgTaminiaux
11
74 kgD'heygere
12
76 kgKooistra
13
74 kgMaciejuk
14
78 kgJohansen
15
77 kgSalby
16
68 kgFouché
17
71 kgWillems
20
67 kgGamper
21
86 kgHirschi
22
61 kgWirtgen
25
63 kg
1
75 kgCullaigh
2
78 kgEekhoff
3
75 kgThijssen
4
74 kgGarrison
5
76 kgDewulf
6
74 kgWeemaes
7
73 kgBarta
8
61 kgWirtgen
9
77 kgZijlaard
10
73 kgTaminiaux
11
74 kgD'heygere
12
76 kgKooistra
13
74 kgMaciejuk
14
78 kgJohansen
15
77 kgSalby
16
68 kgFouché
17
71 kgWillems
20
67 kgGamper
21
86 kgHirschi
22
61 kgWirtgen
25
63 kg
Weight (KG) →
Result →
86
61
1
25
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | PHILIPSEN Jasper | 75 |
| 2 | CULLAIGH Gabriel | 78 |
| 3 | EEKHOFF Nils | 75 |
| 4 | THIJSSEN Gerben | 74 |
| 5 | GARRISON Ian | 76 |
| 6 | DEWULF Stan | 74 |
| 7 | WEEMAES Sasha | 73 |
| 8 | BARTA Will | 61 |
| 9 | WIRTGEN Tom | 77 |
| 10 | ZIJLAARD Maikel | 73 |
| 11 | TAMINIAUX Lionel | 74 |
| 12 | D'HEYGERE Gil | 76 |
| 13 | KOOISTRA Marten | 74 |
| 14 | MACIEJUK Filip | 78 |
| 15 | JOHANSEN Julius | 77 |
| 16 | SALBY Alexander | 68 |
| 17 | FOUCHÉ James | 71 |
| 20 | WILLEMS Thimo | 67 |
| 21 | GAMPER Florian | 86 |
| 22 | HIRSCHI Marc | 61 |
| 25 | WIRTGEN Luc | 63 |