Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 14
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Pidcock
1
58 kgStewart
2
66 kgGarrison
3
76 kgEekhoff
4
75 kgVan Moer
5
79 kgGroves
6
76 kgDenis
7
67 kgBjerg
8
78 kgZijlaard
9
73 kgFoss
10
74 kgFouché
11
71 kgMarit
12
72 kgFrehen
13
66 kgScaroni
14
63 kgDekker
15
80 kgScott
17
73 kgRasch
18
71 kgBeullens
20
79 kgHoole
21
81 kgJerman
22
67 kgVan Wilder
23
64 kgLeknessund
25
72 kgBouwmans
26
64 kgHeiderscheid
27
73 kg
1
58 kgStewart
2
66 kgGarrison
3
76 kgEekhoff
4
75 kgVan Moer
5
79 kgGroves
6
76 kgDenis
7
67 kgBjerg
8
78 kgZijlaard
9
73 kgFoss
10
74 kgFouché
11
71 kgMarit
12
72 kgFrehen
13
66 kgScaroni
14
63 kgDekker
15
80 kgScott
17
73 kgRasch
18
71 kgBeullens
20
79 kgHoole
21
81 kgJerman
22
67 kgVan Wilder
23
64 kgLeknessund
25
72 kgBouwmans
26
64 kgHeiderscheid
27
73 kg
Weight (KG) →
Result →
81
58
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | PIDCOCK Thomas | 58 |
2 | STEWART Jake | 66 |
3 | GARRISON Ian | 76 |
4 | EEKHOFF Nils | 75 |
5 | VAN MOER Brent | 79 |
6 | GROVES Kaden | 76 |
7 | DENIS Thomas | 67 |
8 | BJERG Mikkel | 78 |
9 | ZIJLAARD Maikel | 73 |
10 | FOSS Tobias | 74 |
11 | FOUCHÉ James | 71 |
12 | MARIT Arne | 72 |
13 | FREHEN Jeremy | 66 |
14 | SCARONI Christian | 63 |
15 | DEKKER David | 80 |
17 | SCOTT Robert | 73 |
18 | RASCH Jesper | 71 |
20 | BEULLENS Cedric | 79 |
21 | HOOLE Daan | 81 |
22 | JERMAN Žiga | 67 |
23 | VAN WILDER Ilan | 64 |
25 | LEKNESSUND Andreas | 72 |
26 | BOUWMANS Dylan | 64 |
27 | HEIDERSCHEID Colin | 73 |