Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 36
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Brown
1
65 kgTulik
5
64 kgBreyne
12
83 kgElissonde
13
52 kgWaeytens
15
67 kgKreder
16
71 kgHofland
17
71 kgDémare
18
76 kgFlaksis
22
79 kgPetit
23
80 kgMannion
24
58 kgMannaerts
25
73 kgSimón
26
64 kgSkujiņš
28
70 kgCombaud
29
63 kgLambert-Lemay
30
81 kgTortelier
43
63 kgSprengers
45
60 kgDruyts
50
69 kgVan der Sande
59
67 kg
1
65 kgTulik
5
64 kgBreyne
12
83 kgElissonde
13
52 kgWaeytens
15
67 kgKreder
16
71 kgHofland
17
71 kgDémare
18
76 kgFlaksis
22
79 kgPetit
23
80 kgMannion
24
58 kgMannaerts
25
73 kgSimón
26
64 kgSkujiņš
28
70 kgCombaud
29
63 kgLambert-Lemay
30
81 kgTortelier
43
63 kgSprengers
45
60 kgDruyts
50
69 kgVan der Sande
59
67 kg
Weight (KG) →
Result →
83
52
1
59
# | Rider | Weight (KG) |
---|---|---|
1 | BROWN Nathan | 65 |
5 | TULIK Angélo | 64 |
12 | BREYNE Jonathan | 83 |
13 | ELISSONDE Kenny | 52 |
15 | WAEYTENS Zico | 67 |
16 | KREDER Wesley | 71 |
17 | HOFLAND Moreno | 71 |
18 | DÉMARE Arnaud | 76 |
22 | FLAKSIS Andžs | 79 |
23 | PETIT Adrien | 80 |
24 | MANNION Gavin | 58 |
25 | MANNAERTS Jelle | 73 |
26 | SIMÓN Jordi | 64 |
28 | SKUJIŅŠ Toms | 70 |
29 | COMBAUD Romain | 63 |
30 | LAMBERT-LEMAY Simon | 81 |
43 | TORTELIER Etienne | 63 |
45 | SPRENGERS Thomas | 60 |
50 | DRUYTS Gerry | 69 |
59 | VAN DER SANDE Tosh | 67 |