Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.9 * weight - 100
This means that on average for every extra kilogram weight a rider loses 1.9 positions in the result.
Tulik
2
64 kgElissonde
7
52 kgBrown
9
65 kgSimón
12
64 kgDémare
13
76 kgVan der Sande
14
67 kgWaeytens
16
67 kgSprengers
19
60 kgMannion
20
58 kgMannaerts
22
73 kgDruyts
27
69 kgSkujiņš
28
70 kgCombaud
32
63 kgBreyne
47
83 kgLambert-Lemay
49
81 kgKreder
53
71 kgHofland
56
71 kgTortelier
58
63 kgFlaksis
61
79 kgPetit
115
80 kg
2
64 kgElissonde
7
52 kgBrown
9
65 kgSimón
12
64 kgDémare
13
76 kgVan der Sande
14
67 kgWaeytens
16
67 kgSprengers
19
60 kgMannion
20
58 kgMannaerts
22
73 kgDruyts
27
69 kgSkujiņš
28
70 kgCombaud
32
63 kgBreyne
47
83 kgLambert-Lemay
49
81 kgKreder
53
71 kgHofland
56
71 kgTortelier
58
63 kgFlaksis
61
79 kgPetit
115
80 kg
Weight (KG) →
Result →
83
52
2
115
# | Rider | Weight (KG) |
---|---|---|
2 | TULIK Angélo | 64 |
7 | ELISSONDE Kenny | 52 |
9 | BROWN Nathan | 65 |
12 | SIMÓN Jordi | 64 |
13 | DÉMARE Arnaud | 76 |
14 | VAN DER SANDE Tosh | 67 |
16 | WAEYTENS Zico | 67 |
19 | SPRENGERS Thomas | 60 |
20 | MANNION Gavin | 58 |
22 | MANNAERTS Jelle | 73 |
27 | DRUYTS Gerry | 69 |
28 | SKUJIŅŠ Toms | 70 |
32 | COMBAUD Romain | 63 |
47 | BREYNE Jonathan | 83 |
49 | LAMBERT-LEMAY Simon | 81 |
53 | KREDER Wesley | 71 |
56 | HOFLAND Moreno | 71 |
58 | TORTELIER Etienne | 63 |
61 | FLAKSIS Andžs | 79 |
115 | PETIT Adrien | 80 |