Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.3 * weight + 122
This means that on average for every extra kilogram weight a rider loses -1.3 positions in the result.
Breyne
2
83 kgWaeytens
3
67 kgDémare
7
76 kgFlaksis
8
79 kgBrown
9
65 kgTulik
12
64 kgHofland
14
71 kgPetit
18
80 kgMannion
20
58 kgMannaerts
23
73 kgSkujiņš
24
70 kgLambert-Lemay
28
81 kgCombaud
29
63 kgSimón
31
64 kgElissonde
49
52 kgSprengers
58
60 kgVan der Sande
61
67 kgKreder
64
71 kgDruyts
68
69 kgTortelier
106
63 kg
2
83 kgWaeytens
3
67 kgDémare
7
76 kgFlaksis
8
79 kgBrown
9
65 kgTulik
12
64 kgHofland
14
71 kgPetit
18
80 kgMannion
20
58 kgMannaerts
23
73 kgSkujiņš
24
70 kgLambert-Lemay
28
81 kgCombaud
29
63 kgSimón
31
64 kgElissonde
49
52 kgSprengers
58
60 kgVan der Sande
61
67 kgKreder
64
71 kgDruyts
68
69 kgTortelier
106
63 kg
Weight (KG) →
Result →
83
52
2
106
# | Rider | Weight (KG) |
---|---|---|
2 | BREYNE Jonathan | 83 |
3 | WAEYTENS Zico | 67 |
7 | DÉMARE Arnaud | 76 |
8 | FLAKSIS Andžs | 79 |
9 | BROWN Nathan | 65 |
12 | TULIK Angélo | 64 |
14 | HOFLAND Moreno | 71 |
18 | PETIT Adrien | 80 |
20 | MANNION Gavin | 58 |
23 | MANNAERTS Jelle | 73 |
24 | SKUJIŅŠ Toms | 70 |
28 | LAMBERT-LEMAY Simon | 81 |
29 | COMBAUD Romain | 63 |
31 | SIMÓN Jordi | 64 |
49 | ELISSONDE Kenny | 52 |
58 | SPRENGERS Thomas | 60 |
61 | VAN DER SANDE Tosh | 67 |
64 | KREDER Wesley | 71 |
68 | DRUYTS Gerry | 69 |
106 | TORTELIER Etienne | 63 |