Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 9
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Kreder
1
71 kgTortelier
4
63 kgBrown
5
65 kgHofland
7
71 kgDémare
10
76 kgMannaerts
11
73 kgSprengers
16
60 kgSimón
17
64 kgWaeytens
24
67 kgDruyts
27
69 kgCombaud
31
63 kgMannion
32
58 kgPetit
43
80 kgBreyne
48
83 kgLambert-Lemay
50
81 kgSkujiņš
51
70 kgElissonde
54
52 kgTulik
56
64 kgFlaksis
58
79 kgVan der Sande
82
67 kg
1
71 kgTortelier
4
63 kgBrown
5
65 kgHofland
7
71 kgDémare
10
76 kgMannaerts
11
73 kgSprengers
16
60 kgSimón
17
64 kgWaeytens
24
67 kgDruyts
27
69 kgCombaud
31
63 kgMannion
32
58 kgPetit
43
80 kgBreyne
48
83 kgLambert-Lemay
50
81 kgSkujiņš
51
70 kgElissonde
54
52 kgTulik
56
64 kgFlaksis
58
79 kgVan der Sande
82
67 kg
Weight (KG) →
Result →
83
52
1
82
# | Rider | Weight (KG) |
---|---|---|
1 | KREDER Wesley | 71 |
4 | TORTELIER Etienne | 63 |
5 | BROWN Nathan | 65 |
7 | HOFLAND Moreno | 71 |
10 | DÉMARE Arnaud | 76 |
11 | MANNAERTS Jelle | 73 |
16 | SPRENGERS Thomas | 60 |
17 | SIMÓN Jordi | 64 |
24 | WAEYTENS Zico | 67 |
27 | DRUYTS Gerry | 69 |
31 | COMBAUD Romain | 63 |
32 | MANNION Gavin | 58 |
43 | PETIT Adrien | 80 |
48 | BREYNE Jonathan | 83 |
50 | LAMBERT-LEMAY Simon | 81 |
51 | SKUJIŅŠ Toms | 70 |
54 | ELISSONDE Kenny | 52 |
56 | TULIK Angélo | 64 |
58 | FLAKSIS Andžs | 79 |
82 | VAN DER SANDE Tosh | 67 |