Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.6 * weight + 150
This means that on average for every extra kilogram weight a rider loses -1.6 positions in the result.
Hofland
1
71 kgVan Hoecke
8
78 kgStuyven
10
78 kgChetout
11
70 kgBarguil
21
61 kgDe Rooze
24
62 kgBrown
29
65 kgBreyne
33
83 kgWaeytens
37
67 kgDruyts
38
69 kgMannion
46
58 kgTurgis
57
63 kgHník
58
57 kgCraddock
65
69 kgPacher
70
62 kgDe Jonghe
85
69 kgPaillot
87
72 kgLe Roux
103
59 kg
1
71 kgVan Hoecke
8
78 kgStuyven
10
78 kgChetout
11
70 kgBarguil
21
61 kgDe Rooze
24
62 kgBrown
29
65 kgBreyne
33
83 kgWaeytens
37
67 kgDruyts
38
69 kgMannion
46
58 kgTurgis
57
63 kgHník
58
57 kgCraddock
65
69 kgPacher
70
62 kgDe Jonghe
85
69 kgPaillot
87
72 kgLe Roux
103
59 kg
Weight (KG) →
Result →
83
57
1
103
# | Rider | Weight (KG) |
---|---|---|
1 | HOFLAND Moreno | 71 |
8 | VAN HOECKE Gijs | 78 |
10 | STUYVEN Jasper | 78 |
11 | CHETOUT Loïc | 70 |
21 | BARGUIL Warren | 61 |
24 | DE ROOZE Niels | 62 |
29 | BROWN Nathan | 65 |
33 | BREYNE Jonathan | 83 |
37 | WAEYTENS Zico | 67 |
38 | DRUYTS Gerry | 69 |
46 | MANNION Gavin | 58 |
57 | TURGIS Jimmy | 63 |
58 | HNÍK Karel | 57 |
65 | CRADDOCK Lawson | 69 |
70 | PACHER Quentin | 62 |
85 | DE JONGHE Kevin | 69 |
87 | PAILLOT Yoann | 72 |
103 | LE ROUX Romain | 59 |