Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.9 * weight + 155
This means that on average for every extra kilogram weight a rider loses -1.9 positions in the result.
Hofland
1
71 kgDe Jonghe
2
69 kgWaeytens
3
67 kgBreyne
4
83 kgPaillot
5
72 kgTurgis
9
63 kgVan Hoecke
12
78 kgBarguil
16
61 kgChetout
20
70 kgCraddock
21
69 kgStuyven
26
78 kgLe Roux
30
59 kgDe Rooze
39
62 kgMannion
52
58 kgBrown
56
65 kgPacher
58
62 kgDruyts
63
69 kgHník
83
57 kg
1
71 kgDe Jonghe
2
69 kgWaeytens
3
67 kgBreyne
4
83 kgPaillot
5
72 kgTurgis
9
63 kgVan Hoecke
12
78 kgBarguil
16
61 kgChetout
20
70 kgCraddock
21
69 kgStuyven
26
78 kgLe Roux
30
59 kgDe Rooze
39
62 kgMannion
52
58 kgBrown
56
65 kgPacher
58
62 kgDruyts
63
69 kgHník
83
57 kg
Weight (KG) →
Result →
83
57
1
83
# | Rider | Weight (KG) |
---|---|---|
1 | HOFLAND Moreno | 71 |
2 | DE JONGHE Kevin | 69 |
3 | WAEYTENS Zico | 67 |
4 | BREYNE Jonathan | 83 |
5 | PAILLOT Yoann | 72 |
9 | TURGIS Jimmy | 63 |
12 | VAN HOECKE Gijs | 78 |
16 | BARGUIL Warren | 61 |
20 | CHETOUT Loïc | 70 |
21 | CRADDOCK Lawson | 69 |
26 | STUYVEN Jasper | 78 |
30 | LE ROUX Romain | 59 |
39 | DE ROOZE Niels | 62 |
52 | MANNION Gavin | 58 |
56 | BROWN Nathan | 65 |
58 | PACHER Quentin | 62 |
63 | DRUYTS Gerry | 69 |
83 | HNÍK Karel | 57 |